Mixing time guarantees for unadjusted Hamiltonian Monte Carlo

被引:11
|
作者
Bou-rabee, Nawaf [1 ]
Eberle, Andreas [2 ]
机构
[1] Rutgers Univ Camden, Dept Math Sci, 311 N 5th St, Camden, NJ 08102 USA
[2] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
基金
美国国家科学基金会;
关键词
MCMC; Hamiltonian Monte Carlo; mixing time; couplings; variational integrators; CONTRACTION RATES; CONVERGENCE; COUPLINGS; EQUATIONS; MCMC;
D O I
10.3150/21-BEJ1450
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide quantitative upper bounds on the total variation mixing time of the Markov chain corresponding to the unadjusted Hamiltonian Monte Carlo (uHMC) algorithm. For two general classes of models and fixed time discretization step size h, the mixing time is shown to depend only logarithmically on the dimension. Moreover, we provide quantitative upper bounds on the total variation distance between the invariant measure of the uHMC chain and the true target measure. As a consequence, we show that an epsilon-accurate approximation of the target distribution ( ) mu in total variation distance can be achieved by uHMC: (i) for a broad class of models with O d3/4 epsilon-1/2log(d/epsilon) ( ) gradient evaluations; and (ii) for mean field models with weak interactions with O d1/2 epsilon-1/2 log(d/epsilon) gradient evaluations. The proofs are based on the construction of successful couplings for uHMC that realize the upper bounds.
引用
收藏
页码:75 / 104
页数:30
相关论文
共 50 条
  • [11] Split Hamiltonian Monte Carlo
    Babak Shahbaba
    Shiwei Lan
    Wesley O. Johnson
    Radford M. Neal
    Statistics and Computing, 2014, 24 : 339 - 349
  • [12] Magnetic Hamiltonian Monte Carlo
    Tripuraneni, Nilesh
    Rowland, Mark
    Ghahramani, Zoubin
    Turner, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [13] Nonparametric Hamiltonian Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [14] Split Hamiltonian Monte Carlo
    Shahbaba, Babak
    Lan, Shiwei
    Johnson, Wesley O.
    Neal, Radford M.
    STATISTICS AND COMPUTING, 2014, 24 (03) : 339 - 349
  • [15] Microcanonical Hamiltonian Monte Carlo
    Robnik, Jakob
    De Luca, G. Bruno
    Silverstein, Eva
    Seljak, Uros
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [16] CONSERVATIVE HAMILTONIAN MONTE CARLO
    McGregor, Geoffrey
    Wan, Andy T.S.
    arXiv, 2022,
  • [17] Hamiltonian Monte Carlo Swindles
    Piponi, Dan
    Hoffman, Matthew D.
    Sountsov, Pavel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3774 - 3782
  • [18] RANDOMIZED HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Maria Sanz-Serna, Jesus
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2159 - 2194
  • [19] Wormhole Hamiltonian Monte Carlo
    Lan, Shiwei
    Streets, Jeffrey
    Shahbaba, Babak
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1953 - 1959
  • [20] Adaptive Tuning of Hamiltonian Monte Carlo Within Sequential Monte Carlo
    Buchholz, Alexander
    Chopin, Nicolas
    Jacob, Pierre E.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 745 - 771