Microcanonical Hamiltonian Monte Carlo

被引:0
|
作者
Robnik, Jakob [1 ]
De Luca, G. Bruno [2 ]
Silverstein, Eva [2 ]
Seljak, Uros [1 ,3 ]
机构
[1] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Monte Carlo Sampling; Hamiltonian Dynamics; Langevin Dynamics; Bayesian inference;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop Microcanonical Hamiltonian Monte Carlo (MCHMC), a class of models that follow fixed energy Hamiltonian dynamics, in contrast to Hamiltonian Monte Carlo (HMC), which follows canonical distribution with different energy levels. MCHMC tunes the Hamiltonian function such that the marginal of the uniform distribution on the constant-energy surface over the momentum variables gives the desired target distribution. We show that MCHMC requires occasional energy-conserving billiard-like momentum bounces for ergodicity, analogous to momentum resampling in HMC. We generalize the concept of bounces to a continuous version with partial direction preserving bounces at every step, which gives energy-conserving underdamped Langevin-like dynamics with non-Gaussian noise (MCLMC). MCHMC and MCLMC exhibit favorable scalings with condition number and dimensionality. We develop an efficient hyperparameter tuning scheme that achieves high performance and consistently outperforms NUTS HMC on several standard benchmark problems, in some cases by orders of magnitude.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] MICROCANONICAL MONTE-CARLO SIMULATION
    CREUTZ, M
    PHYSICAL REVIEW LETTERS, 1983, 50 (19) : 1411 - 1414
  • [2] HYPERVOLUMES IN MICROCANONICAL MONTE-CARLO
    FERNANDES, FMSS
    RAMALHO, JPP
    COMPUTER PHYSICS COMMUNICATIONS, 1995, 90 (01) : 73 - 80
  • [3] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [4] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [5] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [6] MICROCANONICAL ENSEMBLE MONTE-CARLO METHOD
    RAY, JR
    PHYSICAL REVIEW A, 1991, 44 (06): : 4061 - 4064
  • [7] MICROCANONICAL CLUSTER MONTE-CARLO SIMULATION
    CREUTZ, M
    PHYSICAL REVIEW LETTERS, 1992, 69 (07) : 1002 - 1005
  • [8] Microcanonical Monte Carlo simulation of thermodynamic properties
    Lustig, R
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (20): : 8816 - 8828
  • [9] Split Hamiltonian Monte Carlo
    Babak Shahbaba
    Shiwei Lan
    Wesley O. Johnson
    Radford M. Neal
    Statistics and Computing, 2014, 24 : 339 - 349
  • [10] Magnetic Hamiltonian Monte Carlo
    Tripuraneni, Nilesh
    Rowland, Mark
    Ghahramani, Zoubin
    Turner, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70