Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images

被引:1
|
作者
Chatterjee, Soumick [1 ,2 ,3 ]
Saad, Fatima [4 ,5 ]
Sarasaen, Chompunuch [4 ,5 ,6 ]
Ghosh, Suhita [2 ,7 ]
Krug, Valerie [2 ,7 ]
Khatun, Rupali [8 ,9 ]
Mishra, Rahul [10 ]
Desai, Nirja [11 ]
Radeva, Petia [8 ,12 ]
Rose, Georg [4 ,5 ,13 ]
Stober, Sebastian [2 ,7 ]
Speck, Oliver [5 ,6 ,13 ,14 ]
Nuernberger, Andreas [1 ,2 ,13 ]
机构
[1] Otto von Guericke Univ, Data & Knowledge Engn Grp, D-39106 Magdeburg, Germany
[2] Otto von Guericke Univ, Fac Comp Sci, D-39106 Magdeburg, Germany
[3] Human Technopole, Genom Res Ctr, I-20157 Milan, Italy
[4] Otto von Guericke Univ, Inst Med Engn, D-39106 Magdeburg, Germany
[5] Otto von Guericke Univ, Res Campus STIMULATE, D-39106 Magdeburg, Germany
[6] Otto von Guericke Univ, Biomed Magnet Resonance, D-39106 Magdeburg, Germany
[7] Otto von Guericke Univ, Artificial Intelligence Lab, D-39106 Magdeburg, Germany
[8] Univ Barcelona, Dept Math & Comp Sci, Barcelona 08028, Spain
[9] Univ Klinikum Erlangen, Dept Radiat Oncol, Translat Radiobiol, D-91054 Erlangen, Germany
[10] Apollo Hosp, Bilaspur 495006, India
[11] HCG Canc Ctr, Vadodara 390012, India
[12] Comp Vis Ctr, Cerdanyola Del Valles 08193, Spain
[13] Ctr Behav Brain Sci, D-39106 Magdeburg, Germany
[14] German Ctr Neurodegenerat Dis, D-39106 Magdeburg, Germany
关键词
COVID-19; pneumonia; chest X-ray; multilabel image classification; deep learning; model ensemble; interpretability analysis; CORONAVIRUS; SUPPORT; CT;
D O I
10.3390/jimaging10020045
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and has challenged different sectors. One of the most effective ways to limit its spread is the early and accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography (CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting medical personnel in the diagnosis process. Thus, in this article, five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using majority voting, have been used to classify COVID-19, pneumoni AE and healthy subjects using chest X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient, if present. Firstly, the interpretability of each of the networks was thoroughly studied using local interpretability methods-occlusion, saliency, input X gradient, guided backpropagation, integrated gradients, and DeepLIFT-and using a global technique-neuron activation profiles. The mean micro F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the ensemble of the network models. The qualitative results showed that the ResNets were the most interpretable models. This research demonstrates the importance of using interpretability methods to compare different models before making a decision regarding the best performing model.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Chest X-ray Classification Using Deep Learning for Automated COVID-19 Screening
    Shelke A.
    Inamdar M.
    Shah V.
    Tiwari A.
    Hussain A.
    Chafekar T.
    Mehendale N.
    SN Computer Science, 2021, 2 (4)
  • [32] Machine Learning Techniques on X-ray Images for Covid-19 Classification
    Caroprese, Luciano
    Vocaturo, Eugenio
    Zumpano, Ester
    2022 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2022, : 539 - 543
  • [33] Deep Dense Model for Classification of Covid-19 in X-ray Images
    Alsabban, Wesam H.
    Ahmad, Fareed
    Al-Laith, Ali
    Kabrah, Saeed M.
    Boghdadi, Mohammed A.
    Masud, Farhan
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (01): : 429 - 442
  • [34] Transfer Learning Methods for Classification of COVID-19 Chest X-ray Images
    Singh, Hardit
    Saini, Simarjeet S.
    Lakshminarayanan, Vasudevan
    MULTIMODAL BIOMEDICAL IMAGING XVI, 2021, 11634
  • [35] CLASSIFICATION OF COVID-19 PATIENT'S CHEST X-RAY IMAGES USING MACHINE LEARNING TECHNIQUES - A COMPARATIVE ANALYSIS
    Mol, A. A. Shernas
    Sabu, M. K.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (12): : 3017 - 3026
  • [36] COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence
    Khan, Muhammad Attique
    Azhar, Marium
    Ibrar, Kainat
    Alqahtani, Abdullah
    Alsubai, Shtwai
    Binbusayyis, Adel
    Kim, Ye Jin
    Chang, Byoungchol
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [37] COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence
    Khan, Muhammad Attique
    Azhar, Marium
    Ibrar, Kainat
    Alqahtani, Abdullah
    Alsubai, Shtwai
    Binbusayyis, Adel
    Kim, Ye Jin
    Chang, Byoungchol
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [38] Deep Learning for Reliable Classification of COVID-19, MERS, and SARS from Chest X-ray Images
    Tahir, Anas M.
    Qiblawey, Yazan
    Khandakar, Amith
    Rahman, Tawsifur
    Khurshid, Uzair
    Musharavati, Farayi
    Islam, M. T.
    Kiranyaz, Serkan
    Al-Maadeed, Somaya
    Chowdhury, Muhammad E. H.
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1752 - 1772
  • [39] Diagnosis of COVID-19 from X-ray images using deep learning techniques
    Alghamdi, Maha Mesfer Meshref
    Dahab, Mohammed Yehia Hassan
    COGENT ENGINEERING, 2022, 9 (01):
  • [40] Deep Learning for Reliable Classification of COVID-19, MERS, and SARS from Chest X-ray Images
    Anas M. Tahir
    Yazan Qiblawey
    Amith Khandakar
    Tawsifur Rahman
    Uzair Khurshid
    Farayi Musharavati
    M. T. Islam
    Serkan Kiranyaz
    Somaya Al-Maadeed
    Muhammad E. H. Chowdhury
    Cognitive Computation, 2022, 14 : 1752 - 1772