Deep Dense Model for Classification of Covid-19 in X-ray Images

被引:2
|
作者
Alsabban, Wesam H. [1 ]
Ahmad, Fareed [2 ]
Al-Laith, Ali [3 ]
Kabrah, Saeed M. [4 ]
Boghdadi, Mohammed A. [5 ]
Masud, Farhan [6 ]
机构
[1] Umm Al Qura Univ, Fac Comp & Informat Syst, Informat Syst Dept, Mecca, Saudi Arabia
[2] Univ Vet & Anim Sci, Fac Vet Sci, Inst Microbiol, Qual Operat Lab, Lahore, Pakistan
[3] Univ Engn & Technol, Alkhawarizmi Inst Comp Sci, Ctr Language Engn, Lahore, Pakistan
[4] Umm Al Qura Univ, Fac Appl Med Sci, Lab Med Dept, Mecca, Saudi Arabia
[5] King Faisal Specialist Hosp & Res Ctr KFSH&RC, Jeddah, Saudi Arabia
[6] Univ Vet & Anim Sci, Fac Life Sci Business Management, Dept Stat & Comp Sci, Lahore, Pakistan
关键词
Deep learning models; dense model; fine-tuning; augmentation; transfer learning; COVID-19; classification; coronavirus; FEATURES;
D O I
10.22937/IJCSNS.2022.22.1.56
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Novel Coronavirus, SARS-CoV-2, can be fatal for humans and animals. The ease of its propagation, with its extraordinary ability to cause disease and even death in humans, makes it a hazard to humanity. Chest X-ray is the most popular but difficult to apprehend radiographic analysis for immediate diagnosis of COVID-19. It yields significant anatomical and physiological information. However, extracting the appropriate information from it is seldom difficult, even for radiologists. Deep CNN architectures can assist in reliable, swift, and accurate results. We propose a deep dense model fine-tuned from scratch and statistically analyzed its results using paired two-sided t-test with state-of-the-art deep learning models, namely, SqueezeNet, AlexNet, DenseNet201, and MobileNetV2. Current datasets are limited and generally unbalanced. However, we devised a larger and well-balanced dataset for training the model. Moreover, as the dataset is still not significant, thus data augmentation and finetuning approaches are employed to evade overfitting and generate a better-generalized model. Our deep dense model produces better performance from analyzed deep learning models to generate Specificity, Recall, FScore, and Accuracy of 97.33%, 92.01%, 92.00%, and 96.01%, when trained on a significantly larger and balanced dataset, while employing 5- Folds cross-validation. The statistical analysis also shows that our model is better than its competing methods. Our deep model can help radiologists in the correct identification of COVID-19 in X-rays. That can contribute toward speedy and reliable diagnosis, thereby saving precious lives and minimizing the socio-economic burden on society.
引用
收藏
页码:429 / 442
页数:14
相关论文
共 50 条
  • [1] COVID-19 classification of X-ray images using deep neural networks
    Keidar, Daphna
    Yaron, Daniel
    Goldstein, Elisha
    Shachar, Yair
    Blass, Ayelet
    Charbinsky, Leonid
    Aharony, Israel
    Lifshitz, Liza
    Lumelsky, Dimitri
    Neeman, Ziv
    Mizrachi, Matti
    Hajouj, Majd
    Eizenbach, Nethanel
    Sela, Eyal
    Weiss, Chedva S.
    Levin, Philip
    Benjaminov, Ofer
    Bachar, Gil N.
    Tamir, Shlomit
    Rapson, Yael
    Suhami, Dror
    Atar, Eli
    Dror, Amiel A.
    Bogot, Naama R.
    Grubstein, Ahuva
    Shabshin, Nogah
    Elyada, Yishai M.
    Eldar, Yonina C.
    EUROPEAN RADIOLOGY, 2021, 31 (12) : 9654 - 9663
  • [2] COVID-19 classification of X-ray images using deep neural networks
    Daphna Keidar
    Daniel Yaron
    Elisha Goldstein
    Yair Shachar
    Ayelet Blass
    Leonid Charbinsky
    Israel Aharony
    Liza Lifshitz
    Dimitri Lumelsky
    Ziv Neeman
    Matti Mizrachi
    Majd Hajouj
    Nethanel Eizenbach
    Eyal Sela
    Chedva S. Weiss
    Philip Levin
    Ofer Benjaminov
    Gil N. Bachar
    Shlomit Tamir
    Yael Rapson
    Dror Suhami
    Eli Atar
    Amiel A. Dror
    Naama R. Bogot
    Ahuva Grubstein
    Nogah Shabshin
    Yishai M. Elyada
    Yonina C. Eldar
    European Radiology, 2021, 31 : 9654 - 9663
  • [3] Deep Metric Learning for Transparent Classification of Covid-19 X-Ray Images
    Calderaro, Salvatore
    Lo Bosco, Giosue
    Rizzo, Riccardo
    Vella, Filippo
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 300 - 307
  • [4] Y Covid-19 Classification Using Deep Learning in Chest X-Ray Images
    Karhan, Zehra
    Akal, Fuat
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [5] Deep Feature Detection Approach for COVID-19 Classification based on X-ray Images
    Noor, Ayman
    Pattanaik, Priyadarshini
    Khan, Mohammed Zubair
    Alromema, Waseem
    Noor, Talal H.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 141 - 146
  • [6] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [7] Classification COVID-19 Based on Enhancement X-Ray Images and Low Complexity Model
    Saad, Aymen
    Kamil, Israa S.
    Alsayat, Ahmed
    Elaraby, Ahmed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 561 - 576
  • [8] COVID-19 classification in X-ray/CT images using pretrained deep learning schemes
    Appavu, Narenthira Kumar
    Babu, Nelson Kennedy C.
    Kadry, Seifedine
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83157 - 83177
  • [9] Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images
    Samee, Nagwan Abdel
    El-Kenawy, El-Sayed M.
    Atteia, Ghada
    Jamjoom, Mona M.
    Ibrahim, Abdelhameed
    Abdelhamid, Abdelaziz A.
    El-Attar, Noha E.
    Gaber, Tarek
    Slowik, Adam
    Shams, Mahmoud Y.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4193 - 4210
  • [10] Exploration of Interpretability Techniques for Deep COVID-19 Classification Using Chest X-ray Images
    Chatterjee, Soumick
    Saad, Fatima
    Sarasaen, Chompunuch
    Ghosh, Suhita
    Krug, Valerie
    Khatun, Rupali
    Mishra, Rahul
    Desai, Nirja
    Radeva, Petia
    Rose, Georg
    Stober, Sebastian
    Speck, Oliver
    Nuernberger, Andreas
    JOURNAL OF IMAGING, 2024, 10 (02)