Hybrid quantum error correction in qubit architectures

被引:1
|
作者
Kristensen, Lasse Bjorn [1 ]
Kjaergaard, Morten [2 ,5 ]
Andersen, Christian Kraglund [3 ,6 ]
Zinner, Nikolaj Thomas [1 ,4 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[4] Aarhus Univ, Aarhus Inst Adv Study, DK-8000 Aarhus, Denmark
[5] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[6] Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
基金
美国国家科学基金会;
关键词
SUPERCONDUCTING QUBITS; STATE; REALIZATION;
D O I
10.1103/PhysRevA.108.022403
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Noise and errors are inevitable parts of any practical implementation of a quantum computer. As a result, large-scale quantum computation will require ways to detect and correct errors in quantum information. Here we present such a quantum error-correcting scheme for correcting the dominant phase and decay errors in superconducting qubit architectures using a hybrid approach combining autonomous correction based on engineered dissipation with traditional measurement-based quantum error correction. Using numerical simulations with realistic device parameters for superconducting circuits, we show that this scheme can achieve a five- to tenfold increase in storage time while using only six qubits for the encoding and two ancillary qubits for the operation of the autonomous correction, providing a potentially large reduction of qubit overhead compared to typical measurement-based error-correction schemes. Furthermore, the scheme relies on standard interactions and qubit driving available in most major quantum computing platforms, making it implementable in a wide range of architectures.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Fidelity-based distance bounds for N-qubit approximate quantum error correction
    Fiusa, Guilherme
    Soares-Pinto, Diogo O.
    Pires, Diego Paiva
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [42] Achieving Heisenberg scaling on measurement of a three-qubit system via quantum error correction
    Hu, Le
    Pang, Shengshi
    Jordan, Andrew N.
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [43] Correction: Corrigendum: Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
    Deshui Yu
    María Martínez Valado
    Christoph Hufnagel
    Leong Chuan Kwek
    Luigi Amico
    Rainer Dumke
    Scientific Reports, 7
  • [44] Interfacing a Topological Qubit with a Spin Qubit in a Hybrid Quantum System
    Li, Bo
    Li, Peng-Bo
    Zhou, Yuan
    Liu, Jie
    Li, Hong-Rong
    Li, Fu-Li
    PHYSICAL REVIEW APPLIED, 2019, 11 (04)
  • [45] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [46] Entanglement recovery in noisy binary quantum information protocols via three-qubit quantum error correction codes
    Morea, Alessio
    Notarnicola, Michele N.
    Olivares, Stefano
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2023, 21 (07)
  • [47] Quantum error correction in a solid-state hybrid spin register
    Waldherr, G.
    Wang, Y.
    Zaiser, S.
    Jamali, M.
    Schulte-Herbrueggen, T.
    Abe, H.
    Ohshima, T.
    Isoya, J.
    Du, J. F.
    Neumann, P.
    Wrachtrup, J.
    NATURE, 2014, 506 (7487) : 204 - +
  • [48] Quantum error correction in a solid-state hybrid spin register
    G. Waldherr
    Y. Wang
    S. Zaiser
    M. Jamali
    T. Schulte-Herbrüggen
    H. Abe
    T. Ohshima
    J. Isoya
    J. F. Du
    P. Neumann
    J. Wrachtrup
    Nature, 2014, 506 : 204 - 207
  • [49] Entanglement evolution in a five qubit error correction code
    Yaakov S. Weinstein
    Quantum Information Processing, 2011, 10 : 533 - 542
  • [50] Entanglement evolution in a five qubit error correction code
    Weinstein, Yaakov S.
    QUANTUM INFORMATION PROCESSING, 2011, 10 (04) : 533 - 542