Hybrid quantum error correction in qubit architectures

被引:1
|
作者
Kristensen, Lasse Bjorn [1 ]
Kjaergaard, Morten [2 ,5 ]
Andersen, Christian Kraglund [3 ,6 ]
Zinner, Nikolaj Thomas [1 ,4 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[4] Aarhus Univ, Aarhus Inst Adv Study, DK-8000 Aarhus, Denmark
[5] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[6] Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
基金
美国国家科学基金会;
关键词
SUPERCONDUCTING QUBITS; STATE; REALIZATION;
D O I
10.1103/PhysRevA.108.022403
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Noise and errors are inevitable parts of any practical implementation of a quantum computer. As a result, large-scale quantum computation will require ways to detect and correct errors in quantum information. Here we present such a quantum error-correcting scheme for correcting the dominant phase and decay errors in superconducting qubit architectures using a hybrid approach combining autonomous correction based on engineered dissipation with traditional measurement-based quantum error correction. Using numerical simulations with realistic device parameters for superconducting circuits, we show that this scheme can achieve a five- to tenfold increase in storage time while using only six qubits for the encoding and two ancillary qubits for the operation of the autonomous correction, providing a potentially large reduction of qubit overhead compared to typical measurement-based error-correction schemes. Furthermore, the scheme relies on standard interactions and qubit driving available in most major quantum computing platforms, making it implementable in a wide range of architectures.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Quantum error correction in crossbar architectures
    Helsen, Jonas
    Steudtner, Mark
    Veldhorst, Menno
    Wehner, Stephanie
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [2] Analog Quantum Error Correction with Encoding a Qubit into an Oscillator
    Fukui, Kosuke
    Tomita, Akihisa
    Okamoto, Atsushi
    PHYSICAL REVIEW LETTERS, 2017, 119 (18)
  • [3] Protecting a bosonic qubit with autonomous quantum error correction
    Gertler, Jeffrey M.
    Baker, Brian
    Li, Juliang
    Shirol, Shruti
    Koch, Jens
    Wang, Chen
    NATURE, 2021, 590 (7845) : 243 - 248
  • [4] Protecting a bosonic qubit with autonomous quantum error correction
    Jeffrey M. Gertler
    Brian Baker
    Juliang Li
    Shruti Shirol
    Jens Koch
    Chen Wang
    Nature, 2021, 590 : 243 - 248
  • [5] Error-Transparent Quantum Gates for Small Logical Qubit Architectures
    Kapit, Eliot
    PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [6] Combined error correction techniques for quantum computing architectures
    Byrd, MS
    Lidar, DA
    JOURNAL OF MODERN OPTICS, 2003, 50 (08) : 1285 - 1297
  • [7] Error-transparent operations on a logical qubit protected by quantum error correction
    Ma, Y.
    Xu, Y.
    Mu, X.
    Cai, W.
    Hu, L.
    Wang, W.
    Pan, X.
    Wang, H.
    Song, Y. P.
    Zou, C-L
    Sun, L.
    NATURE PHYSICS, 2020, 16 (08) : 827 - +
  • [8] Error-transparent operations on a logical qubit protected by quantum error correction
    Y. Ma
    Y. Xu
    X. Mu
    W. Cai
    L. Hu
    W. Wang
    X. Pan
    H. Wang
    Y. P. Song
    C.-L. Zou
    L. Sun
    Nature Physics, 2020, 16 : 827 - 831
  • [9] Quantum error correction of a qubit loss in an addressable atomic system
    Vala, J
    Whaley, KB
    Weiss, DS
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [10] Quantum error correction of a qubit encoded in grid states of an oscillator
    P. Campagne-Ibarcq
    A. Eickbusch
    S. Touzard
    E. Zalys-Geller
    N. E. Frattini
    V. V. Sivak
    P. Reinhold
    S. Puri
    S. Shankar
    R. J. Schoelkopf
    L. Frunzio
    M. Mirrahimi
    M. H. Devoret
    Nature, 2020, 584 : 368 - 372