Ordered covering arrays and upper bounds on covering codes

被引:1
|
作者
Castoldi, Andre Guerino [1 ]
Carmelo, Emerson Monte L. [2 ]
Moura, Lucia [3 ]
Panario, Daniel [4 ]
Stevens, Brett [4 ]
机构
[1] Univ Tecnol Fed Parana, Dept Matemat, Pato Branco, PR, Brazil
[2] Univ Estadual Maringa, Dept Matemat, Maringa, PR, Brazil
[3] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
[4] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bounds on codes; covering array; covering code; Niederreiter-Rosenbloom-Tsfasman metric; ordered covering array; ordered orthogonal array; CONSTRUCTIONS; (T; M; S)-NETS;
D O I
10.1002/jcd.21882
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work shows several direct and recursive constructions of ordered covering arrays (OCAs) using projection, fusion, column augmentation, derivation, concatenation, and Cartesian product. Upper bounds on covering codes in Niederreiter-Rosenbloom-Tsfasman (shorten by NRT) spaces are also obtained by improving a general upper bound. We explore the connection between ordered covering arrays and covering codes in NRT spaces, which generalize similar results for the Hamming metric. Combining the new upper bounds for covering codes in NRT spaces and ordered covering arrays, we improve upper bounds on covering codes in NRT spaces for larger alphabets. We give tables comparing the new upper bounds for covering codes to existing ones.
引用
收藏
页码:304 / 329
页数:26
相关论文
共 50 条
  • [41] Structures and lower bounds for binary covering arrays
    Choi, Soohak
    Kim, Hyun Kwang
    Oh, Dong Yeol
    DISCRETE MATHEMATICS, 2012, 312 (19) : 2958 - 2968
  • [42] Upper bounds on the independence and the clique covering number
    Cyriel Van Nuffelen
    Kristel Van Rompay
    Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2003, 1 : 43 - 50
  • [43] Upper bounds on the independence and the clique covering number
    Van Nuffelen, Cyriel
    Van Rompay, Kristel
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2003, 1 (01): : 43 - 50
  • [44] New upper bounds for sequence Covering Arrays using a 3-stage approach
    Torres-Jimenez, Jose
    Ramirez-Acuna, Daniel Osvaldo
    Acevedo-Juárez, Brenda
    Avila-George, Himer
    Expert Systems with Applications, 2022, 207
  • [45] New upper bounds for sequence Covering Arrays using a 3-stage approach
    Torres-Jimenez, Jose
    Osvaldo Ramirez-Acuna, Daniel
    Acevedo-Juarez, Brenda
    Avila-George, Himer
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
  • [46] Upper bounds on the sizes of variable strength covering arrays using the Lovasz local lemma
    Moura, Lucia
    Raaphorst, Sebastian
    Stevens, Brett
    THEORETICAL COMPUTER SCIENCE, 2019, 800 : 146 - 154
  • [47] BOUNDS ON ORDERED CODES AND ORTHOGONAL ARRAYS
    Barg, Alexander
    Purkayastha, Punarbasu
    MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (02) : 211 - 243
  • [48] Bounds on ordered codes and orthogonal arrays
    Barg, Alexander
    Purkayastha, Punarbasu
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 331 - +
  • [49] LOWER BOUNDS FOR q-ARY COVERING CODES
    陈文德
    IIRO S. HONKALA
    ChineseScienceBulletin, 1990, (06) : 521 - 522
  • [50] LOWER BOUNDS FOR Q-ARY COVERING CODES
    CHEN, W
    HONKALA, IS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) : 664 - 671