Ordered covering arrays and upper bounds on covering codes

被引:1
|
作者
Castoldi, Andre Guerino [1 ]
Carmelo, Emerson Monte L. [2 ]
Moura, Lucia [3 ]
Panario, Daniel [4 ]
Stevens, Brett [4 ]
机构
[1] Univ Tecnol Fed Parana, Dept Matemat, Pato Branco, PR, Brazil
[2] Univ Estadual Maringa, Dept Matemat, Maringa, PR, Brazil
[3] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
[4] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bounds on codes; covering array; covering code; Niederreiter-Rosenbloom-Tsfasman metric; ordered covering array; ordered orthogonal array; CONSTRUCTIONS; (T; M; S)-NETS;
D O I
10.1002/jcd.21882
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work shows several direct and recursive constructions of ordered covering arrays (OCAs) using projection, fusion, column augmentation, derivation, concatenation, and Cartesian product. Upper bounds on covering codes in Niederreiter-Rosenbloom-Tsfasman (shorten by NRT) spaces are also obtained by improving a general upper bound. We explore the connection between ordered covering arrays and covering codes in NRT spaces, which generalize similar results for the Hamming metric. Combining the new upper bounds for covering codes in NRT spaces and ordered covering arrays, we improve upper bounds on covering codes in NRT spaces for larger alphabets. We give tables comparing the new upper bounds for covering codes to existing ones.
引用
收藏
页码:304 / 329
页数:26
相关论文
共 50 条
  • [21] Bounds on the Covering Radius of Linear Codes
    A. Ashikhmin
    A. Barg
    Designs, Codes and Cryptography, 2002, 27 : 261 - 269
  • [22] Covering Grassmannian Codes: Bounds and Constructions
    Qian, Bingchen
    Wang, Xin
    Xie, Chengfei
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) : 3748 - 3758
  • [23] BOUNDS ON COVERING RADIUS OF LINEAR CODES
    VELIKOVA, E
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1988, 41 (06): : 13 - 16
  • [24] New lower bounds for covering codes
    Habsieger, L
    Plagne, A
    DISCRETE MATHEMATICS, 2000, 222 (1-3) : 125 - 149
  • [25] New lower bounds for covering codes
    Habsieger, L.
    Plagne, A.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 1999, 17 (03): : 125 - 149
  • [26] Bounds on the covering radius of linear codes
    Ashikhmin, A
    Barg, A
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 27 (03) : 261 - 269
  • [27] General upper bounds for covering numbers
    Godbole, AP
    Thompson, SE
    Vigoda, E
    ARS COMBINATORIA, 1996, 42 : 211 - 221
  • [28] SOME NEW UPPER-BOUNDS ON THE COVERING RADIUS OF BINARY LINEAR CODES
    JANWA, H
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 110 - 122
  • [29] On upper bounds for minimum distance and covering radius of non-binary codes
    Laihonen, Tero
    Litsyn, Simon
    Designs, Codes, and Cryptography, 1998, 14 (01): : 71 - 80
  • [30] Improving the upper bounds on the covering radii of binary Reed-Muller codes
    Carlet, Claude
    Mesnager, Sihem
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) : 162 - 173