Existence of k-Convex Solutions for the k-Hessian Equation

被引:8
|
作者
Bai, Zhanbing [1 ]
Yang, Zedong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
k-Hessian equation; existence; k-convex solution; cone; fixed point theorem; NONLINEAR GRADIENT TERMS; MONGE-AMPERE EQUATIONS; RADIAL SOLUTIONS; ELLIPTIC-EQUATIONS; SYSTEMS; NONEXISTENCE;
D O I
10.1007/s00009-023-02364-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the following Dirichlet boundary value problem of the k -Hessian equation: {S-k (sigma (D(2)z)) = lambda b(|x|)?(-z), in omega, z = 0, on & part;omega,where lambda > 0, omega stands for the open unit ball in R-N, 1 <= k <= N is an integer, and S-k (sigma (D(2)z)) is the k -Hessian operator of z. We obtain the existence results of k -convex radial solutions of the k -Hessian problem for lambda belonging to an open interval. Our main approach is the Guo- Krasnosel'skii fixed point theorem in a cone.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lelong-Jensen type formula, k-Hessian boundary measure and Lelong number for k-convex functions
    Wan, Dongrui
    Wang, Wei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (06): : 635 - 654
  • [32] A SIMPLE PROOF OF CURVATURE ESTIMATE FOR CONVEX SOLUTION OF k-HESSIAN EQUATION
    Chu, Jianchun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) : 3541 - 3552
  • [33] Three radially symmetric k-admissible solutions for k-Hessian equation
    Ma, Ruyun
    He, Zhidian
    Yan, Dongliang
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (08) : 1353 - 1363
  • [34] A quantitative result for the k-Hessian equation
    Masiello, Alba Lia
    Salerno, Francesco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 255
  • [35] Second order estimates for convex solutions of degenerate k-Hessian equations
    Jiao, Heming
    Wang, Zhizhang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (03)
  • [36] Existence and asymptotic behavior of strictly convex solutions for singular k-Hessian equations with nonlinear gradient terms
    He, Xingyue
    Gao, Chenghua
    Wang, Jingjing
    Yao, Xiaobin
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (05) : 713 - 725
  • [37] Existence and Asymptotic Behaviour of Entire Large Solutions for k-Hessian Equations
    Ben Chrouda, Mohamed
    Hassine, Kods
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 469 - 481
  • [38] Existence and Asymptotic Behaviour of Entire Large Solutions for k-Hessian Equations
    Mohamed Ben Chrouda
    Kods Hassine
    Journal of Elliptic and Parabolic Equations, 2022, 8 : 469 - 481
  • [39] On the existence of radial solutions to a nonlinear k-Hessian system with gradient term
    Wang, Guotao
    Zhang, Zhuobin
    Ahmad, Bashir
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 82
  • [40] Global structure of admissible solutions for the k-Hessian equation on bounded domain
    Dai, Guowei
    Luo, Hua
    APPLIED MATHEMATICS LETTERS, 2018, 84 : 155 - 159