共 50 条
Existence of k-Convex Solutions for the k-Hessian Equation
被引:8
|作者:
Bai, Zhanbing
[1
]
Yang, Zedong
[1
]
机构:
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金:
中国国家自然科学基金;
关键词:
k-Hessian equation;
existence;
k-convex solution;
cone;
fixed point theorem;
NONLINEAR GRADIENT TERMS;
MONGE-AMPERE EQUATIONS;
RADIAL SOLUTIONS;
ELLIPTIC-EQUATIONS;
SYSTEMS;
NONEXISTENCE;
D O I:
10.1007/s00009-023-02364-8
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper considers the following Dirichlet boundary value problem of the k -Hessian equation: {S-k (sigma (D(2)z)) = lambda b(|x|)?(-z), in omega, z = 0, on & part;omega,where lambda > 0, omega stands for the open unit ball in R-N, 1 <= k <= N is an integer, and S-k (sigma (D(2)z)) is the k -Hessian operator of z. We obtain the existence results of k -convex radial solutions of the k -Hessian problem for lambda belonging to an open interval. Our main approach is the Guo- Krasnosel'skii fixed point theorem in a cone.
引用
收藏
页数:12
相关论文