Existence of k-Convex Solutions for the k-Hessian Equation

被引:8
|
作者
Bai, Zhanbing [1 ]
Yang, Zedong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
k-Hessian equation; existence; k-convex solution; cone; fixed point theorem; NONLINEAR GRADIENT TERMS; MONGE-AMPERE EQUATIONS; RADIAL SOLUTIONS; ELLIPTIC-EQUATIONS; SYSTEMS; NONEXISTENCE;
D O I
10.1007/s00009-023-02364-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the following Dirichlet boundary value problem of the k -Hessian equation: {S-k (sigma (D(2)z)) = lambda b(|x|)?(-z), in omega, z = 0, on & part;omega,where lambda > 0, omega stands for the open unit ball in R-N, 1 <= k <= N is an integer, and S-k (sigma (D(2)z)) is the k -Hessian operator of z. We obtain the existence results of k -convex radial solutions of the k -Hessian problem for lambda belonging to an open interval. Our main approach is the Guo- Krasnosel'skii fixed point theorem in a cone.
引用
收藏
页数:12
相关论文
共 50 条