Species-level classification of mangrove forest using AVIRIS-NG hyperspectral imagery

被引:3
|
作者
Paramanik, Somnath [1 ]
Deep, Nikhil Raj [1 ]
Behera, Mukunda Dev [1 ]
Bhattacharya, Bimal Kumar [2 ]
Dash, Jadunandan [3 ]
机构
[1] IIT Kharagpur, Ctr Ocean River Atmosphere & Land Sci CORAL, Kharagpur, W Bengal, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad, Gujarat, India
[3] Univ Southampton, Sch Geog & Environm Sci, Highfield Campus, Southampton, England
关键词
Bhitarkanika Wildlife Sanctuary; spectral signature; continuum removal; absorption band depth; Random Forest; NATIONAL-PARK; DISCRIMINATION; VEGETATION;
D O I
10.1080/2150704X.2023.2215945
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Species-level classification of mangroves provides important inputs for conservation, rehabilitation and understanding of ecosystem functions. The hyperspectral sensor, Airborne Visible InfraRed Imaging Spectrometer-New Generation (AVIRIS-NG), holds promises for species-level discrimination by virtue of its coverage across a wider spectrum at very high spatial resolution. Using the continuum removal (CR) technique and absorption band depth (ABD), this study applied Random Forest (RF) model to classify the distribution of three species (Heritiera fomes, Excoecaria agallocha and Avicennia officinalis) and two of their combinations (Heritiera fomes-Excoecaria agallocha and Avicennia officinalis-Excoecaria agallocha). The classified map demonstrated good accuracy (overall accuracy = 88%; kappa coefficient = 0.84) using ABD as an independent variable. The important wavelengths (972, 1172, 1177 nm) identified for mangrove species discrimination correspond to water absorption bands. This characteristic may be replicated for species-level classification of other mangrove forests with similar species.
引用
收藏
页码:522 / 533
页数:12
相关论文
共 50 条
  • [31] Comparative Evaluation of AVIRIS-NG and Hyperion Hyperspectral Image for Talc Mineral Identification
    Govil, Himanshu
    Tripathi, Mahesh Kumar
    Diwan, Prabhat
    Monika
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 2, 2020, 1016 : 95 - 101
  • [32] A stacked ensemble learning-based framework for mineral mapping using AVIRIS-NG hyperspectral image
    Giri, Ram Nivas
    Janghel, Rekh Ram
    Govil, Himanshu
    Mishra, Gaurav
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (02)
  • [33] AVIRIS-NG hyperspectral data analysis for pre- and post-MNF transformation using per-pixel classification algorithms
    Sharma, Laxmi Kant
    Verma, Rajani Kant
    GEOCARTO INTERNATIONAL, 2022, 37 (07) : 2083 - 2094
  • [34] Leaf chlorophyll content retrieval for AVIRIS-NG imagery using different feature selection and wavelet analysis
    Verma, Bhagyashree
    Singh, Prachi
    Prasad, Rajendra
    Srivastava, Prashant K.
    Dave, Rucha
    ADVANCES IN SPACE RESEARCH, 2024, 73 (02) : 1304 - 1315
  • [35] Mapping crop types in fragmented arable landscapes using AVIRIS-NG imagery and limited field data
    Salas, Eric Ariel L.
    Subburayalu, Sakthi Kumaran
    Slater, Brian
    Zhao, Kaiguang
    Bhattacharya, Bimal
    Tripathy, Rojalin
    Das, Ayan
    Nigam, Rahul
    Dave, Rucha
    Parekh, Parshva
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2020, 11 (01) : 33 - 56
  • [36] A hyperspectral R based leaf area index estimator: model development and implementation using AVIRIS-NG
    Singh, Prachi
    Srivastava, Prashant K.
    Mall, R. K.
    Bhattacharya, Bimal K.
    Prasad, Rajendra
    GEOCARTO INTERNATIONAL, 2022, 37 (26) : 12792 - 12809
  • [37] Evaluation of Simulated AVIRIS-NG Imagery Using a Spectral Reconstruction Method for the Retrieval of Leaf Chlorophyll Content
    Verma, Bhagyashree
    Prasad, Rajendra
    Srivastava, Prashant K.
    Singh, Prachi
    Badola, Anushree
    Sharma, Jyoti
    REMOTE SENSING, 2022, 14 (15)
  • [38] Chlorophyll deficiency (chlorosis) detection based on spectral shift and yellowness index using hyperspectral AVIRIS-NG data in Sholayar reserve forest, Kerala
    Ahmad, Shahbaz
    Pandey, Arvind Chandra
    Kumar, Amit
    Parida, Bikash Ranjan
    Lele, Nikhil, V
    Bhattacharya, Bimal K.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2020, 19
  • [39] Soil clay minerals abundance mapping using AVIRIS-NG data
    Priya, Swati
    Ghosh, Ranendu
    ADVANCES IN SPACE RESEARCH, 2024, 73 (02) : 1360 - 1367
  • [40] Radiometric calibration of AVIRIS-NG sensor using Indian desert sites
    Babu, K. N.
    Kumawat, Nandkishor
    Pandya, Mehul R.
    ADVANCES IN SPACE RESEARCH, 2024, 73 (02) : 1211 - 1223