Species-level classification of mangrove forest using AVIRIS-NG hyperspectral imagery

被引:3
|
作者
Paramanik, Somnath [1 ]
Deep, Nikhil Raj [1 ]
Behera, Mukunda Dev [1 ]
Bhattacharya, Bimal Kumar [2 ]
Dash, Jadunandan [3 ]
机构
[1] IIT Kharagpur, Ctr Ocean River Atmosphere & Land Sci CORAL, Kharagpur, W Bengal, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad, Gujarat, India
[3] Univ Southampton, Sch Geog & Environm Sci, Highfield Campus, Southampton, England
关键词
Bhitarkanika Wildlife Sanctuary; spectral signature; continuum removal; absorption band depth; Random Forest; NATIONAL-PARK; DISCRIMINATION; VEGETATION;
D O I
10.1080/2150704X.2023.2215945
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Species-level classification of mangroves provides important inputs for conservation, rehabilitation and understanding of ecosystem functions. The hyperspectral sensor, Airborne Visible InfraRed Imaging Spectrometer-New Generation (AVIRIS-NG), holds promises for species-level discrimination by virtue of its coverage across a wider spectrum at very high spatial resolution. Using the continuum removal (CR) technique and absorption band depth (ABD), this study applied Random Forest (RF) model to classify the distribution of three species (Heritiera fomes, Excoecaria agallocha and Avicennia officinalis) and two of their combinations (Heritiera fomes-Excoecaria agallocha and Avicennia officinalis-Excoecaria agallocha). The classified map demonstrated good accuracy (overall accuracy = 88%; kappa coefficient = 0.84) using ABD as an independent variable. The important wavelengths (972, 1172, 1177 nm) identified for mangrove species discrimination correspond to water absorption bands. This characteristic may be replicated for species-level classification of other mangrove forests with similar species.
引用
收藏
页码:522 / 533
页数:12
相关论文
共 50 条
  • [21] Improved Boreal Forest Wildfire Fuel Type Mapping in Interior Alaska Using AVIRIS-NG Hyperspectral Data
    Smith, Christopher William
    Panda, Santosh K.
    Bhatt, Uma Suren
    Meyer, Franz J.
    REMOTE SENSING, 2021, 13 (05) : 1 - 15
  • [22] Real-Time Atmospheric Correction of AVIRIS-NG Imagery
    Bue, Brian D.
    Thompson, David R.
    Eastwood, Michael
    Green, Robert O.
    Gao, Bo-Cai
    Keymeulen, Didier
    Sarture, Charles M.
    Mazer, Alan S.
    Luong, Huy H.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12): : 6419 - 6428
  • [23] Detection of engineered surfaces using deep learning approach in AVIRIS-NG hyperspectral data
    Gakhar, Shalini
    Tiwari, Kailash Chandra
    GEOCARTO INTERNATIONAL, 2022, 37 (23) : 6932 - 6952
  • [24] Evaluation of AVIRIS-NG hyperspectral images for mineral identification and mapping
    Tripathi, Mahesh Kumar
    Govil, H.
    HELIYON, 2019, 5 (11)
  • [25] Feature identification and extraction of urban built-up surfaces and materials in AVIRIS-NG hyperspectral imagery
    Pandey, Dwijendra
    Tiwari, K. C.
    GEOCARTO INTERNATIONAL, 2022, 37 (06) : 1722 - 1743
  • [26] Spectral mixture analysis of AVIRIS-NG hyperspectral data for material identification and classification for the part of Kolkata city
    Islam, Shah Masudul
    Kumar, Vinay
    Kumar, Shashi
    Agrawal, Shefali
    ADVANCES IN SPACE RESEARCH, 2024, 73 (02) : 1560 - 1572
  • [27] An overview of AVIRIS-NG airborne hyperspectral science campaign over India
    Bhattacharya, Bimal K.
    Green, Robert O.
    Rao, Sadasiva
    Saxena, M.
    Sharma, Shweta
    Kumar, K. Ajay
    Srinivasulu, P.
    Sharma, Shashikant
    Dhar, D.
    Bandyopadhyay, S.
    Bhatwadekar, Shantanu
    Kumar, Raj
    CURRENT SCIENCE, 2019, 116 (07): : 1082 - 1088
  • [28] Efficacy of AVIRIS-NG data for species-specific recognition towards a comparative analysis by hyperspectral classifiers
    Verma, Rajani Kant
    Sharma, Laxmi Kant
    Lele, Nikhil
    ADVANCES IN SPACE RESEARCH, 2024, 73 (02) : 1449 - 1458
  • [29] CROP IDENTIFICATION AND DISCRIMINATION USING AVIRIS-NG HYPERSPECTRAL DATA BASED ON DEEP LEARNING TECHNIQUES
    Patel, Hetul
    Bhagia, Nita
    Vyas, Tarjni
    Bhattacharya, Bimal
    Dave, Kinjal
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3728 - 3731
  • [30] Water quality assessment of River Ganga and Chilika lagoon using AVIRIS-NG hyperspectral data
    Chander, S.
    Gujrati, Ashwin
    Hakeem, K. Abdul
    Garg, Vaibhav
    Issac, Annie Maria
    Dhote, Pankaj R.
    Kumar, Vinay
    Sahay, Arvind
    CURRENT SCIENCE, 2019, 116 (07): : 1172 - 1181