Anomaly Detection Using Deep Learning Respecting the Resources on Board a CubeSat

被引:1
|
作者
Horne, Ross [1 ]
Mauw, Sjouke [1 ]
Mizera, Andrzej [2 ]
Stemper, Andre [3 ]
Thoemel, Jan [4 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Dept Comp Sci, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] IDEAS NCBR, Chmielna 69, PL-00801 Warsaw, Poland
[3] Univ Luxembourg, Fac Sci Technol & Med, 2 Ave Univ, L-4365 Esch Sur Alzette, Luxembourg
[4] Univ Luxembourg, L-1359 Luxembourg City, Luxembourg
关键词
Satellites; Artificial Neural Network; Telemetry; Algorithms and Data Structures; Anomaly Detection; CubeSat; Data-Driven System Monitoring; Spacecraft Health Monitoring; Complex Data Analysis; Deep Learning;
D O I
10.2514/1.I011232
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We explore the feasibility of onboard anomaly detection using artificial neural networks for CubeSat systems and related spacecraft where computing resources are limited. We gather data for training and evaluation using a CubeSat in a laboratory for a scenario where a malfunctioning component affects temperature fluctuations across the control system. This data, published in an open repository, guide the selection of suitable features, neural network architecture, and metrics comprising our anomaly detection algorithm. The precision and recall of the algorithm demonstrate improvements as compared to out-of-limit methods, whereas our open-source implementation for a typical microcontroller exhibits small memory overhead, and hence may coexist with existing control software without introducing new hardware. These features make our solution feasible to deploy on board a CubeSat, and thus on other, more advanced types of satellites.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [41] Acoustic Anomaly Detection of Machinery using Autoencoder based Deep Learning
    Chinnasamy, Mark Damien
    Sumbwanyambe, Mbuyu
    Hlalele, Tlotlollo Sidwell
    2024 32ND SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE, SAUPEC, 2024, : 212 - 217
  • [42] Applications of Anomaly Detection using Deep Learning on Time Series Data
    Van Quan Nguyen
    Linh Van Ma
    Kim, Jin-young
    Kim, Kwangki
    Kim, Jinsul
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 393 - 396
  • [43] BINet: Multivariate Business Process Anomaly Detection Using Deep Learning
    Nolle, Timo
    Seeliger, Alexander
    Muhlhauser, Max
    BUSINESS PROCESS MANAGEMENT (BPM 2018), 2018, 11080 : 271 - 287
  • [44] Web Application Firewall Based on Anomaly Detection using Deep Learning
    Toprak, Sezer
    Yavuz, Ali Gokhan
    ACTA INFOLOGICA, 2022, 6 (02): : 219 - 244
  • [45] Dynamic Network Anomaly Detection System by Using Deep Learning Techniques
    Lin, Peng
    Ye, Kejiang
    Xu, Cheng-Zhong
    CLOUD COMPUTING - CLOUD 2019, 2019, 11513 : 161 - 176
  • [46] Dental anomaly detection using intraoral photos via deep learning
    Ragodos, Ronilo
    Wang, Tong
    Padilla, Carmencita
    Hecht, Jacqueline T.
    Poletta, Fernando A.
    Orioli, Ieda M.
    Buxo, Carmen J.
    Butali, Azeez
    Valencia-Ramirez, Consuelo
    Restrepo Muneton, Claudia
    Wehby, George L.
    Weinberg, Seth M.
    Marazita, Mary L.
    Moreno Uribe, Lina M.
    Howe, Brian J.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [47] Anomaly Detection in Encrypted Internet Traffic Using Hybrid Deep Learning
    Bakhshi, Taimur
    Ghita, Bogdan
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [48] Smart Grid Anomaly Detection using a Deep Learning Digital Twin
    Danilczyk, William
    Sun, Yan
    He, Haibo
    2020 52ND NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2021,
  • [49] Intelligent Crime Anomaly Detection in Smart Cities using Deep Learning
    Chackravarthy, Sharmila
    Schmitt, Steven
    Yang, Li
    2018 4TH IEEE INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC 2018), 2018, : 399 - 404
  • [50] Anomaly Detection with Noisy and Missing Data using a Deep Learning Architecture
    Thomopoulos, Stelios C. A.
    Kyriakopoulos, Christos
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXX, 2021, 11756