Anomaly Detection Using Deep Learning Respecting the Resources on Board a CubeSat

被引:1
|
作者
Horne, Ross [1 ]
Mauw, Sjouke [1 ]
Mizera, Andrzej [2 ]
Stemper, Andre [3 ]
Thoemel, Jan [4 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Dept Comp Sci, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] IDEAS NCBR, Chmielna 69, PL-00801 Warsaw, Poland
[3] Univ Luxembourg, Fac Sci Technol & Med, 2 Ave Univ, L-4365 Esch Sur Alzette, Luxembourg
[4] Univ Luxembourg, L-1359 Luxembourg City, Luxembourg
关键词
Satellites; Artificial Neural Network; Telemetry; Algorithms and Data Structures; Anomaly Detection; CubeSat; Data-Driven System Monitoring; Spacecraft Health Monitoring; Complex Data Analysis; Deep Learning;
D O I
10.2514/1.I011232
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We explore the feasibility of onboard anomaly detection using artificial neural networks for CubeSat systems and related spacecraft where computing resources are limited. We gather data for training and evaluation using a CubeSat in a laboratory for a scenario where a malfunctioning component affects temperature fluctuations across the control system. This data, published in an open repository, guide the selection of suitable features, neural network architecture, and metrics comprising our anomaly detection algorithm. The precision and recall of the algorithm demonstrate improvements as compared to out-of-limit methods, whereas our open-source implementation for a typical microcontroller exhibits small memory overhead, and hence may coexist with existing control software without introducing new hardware. These features make our solution feasible to deploy on board a CubeSat, and thus on other, more advanced types of satellites.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [21] Real-World Anomaly Detection Using Deep Learning
    Koppikar, Unnati
    Sujatha, C.
    Patil, Prakashgoud
    Mudenagudi, Uma
    INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 333 - 342
  • [22] Anomaly Detection in a Crowd Using a Cascade of Deep Learning Networks
    Qiu, Peng
    Kim, Sumi
    Lee, Jeong-Hyu
    Choi, Jaeho
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, INDIA 2017, 2018, 672 : 596 - 607
  • [23] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [24] Anomaly Detection in Electricity Consumption Data using Deep Learning
    Kardi, Mohammad
    AlSkaif, Tarek
    Tekinerdogan, Bedir
    Catalao, Joao P. S.
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [25] IoT Botnet Anomaly Detection Using Unsupervised Deep Learning
    Apostol, Ioana
    Preda, Marius
    Nila, Constantin
    Bica, Ion
    ELECTRONICS, 2021, 10 (16)
  • [26] Using Deep Learning Techniques for Anomaly Detection of Wood Surface
    Kılıç, Kenan
    Özcan, Uğur
    Kılıç, Kazım
    Doğru, İbrahim Alper
    Drvna Industrija, 2024, 75 (03) : 275 - 286
  • [27] Anomaly Detection in Satellite Power System using Deep Learning
    Preetha, S. B. Kavya
    Sai, Jalakam Venu Madhava
    Raj, V. Sowbaranic
    Sekhar, M. Jayan
    Lavanya, R.
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [28] Anomaly Detection on Bridges Using Deep Learning With Partial Training
    Santos-Vila, Ivan
    Soto, Ricardo
    Vega, Emanuel
    Pena Fritz, Alvaro
    Crawford, Broderick
    IEEE ACCESS, 2024, 12 : 116530 - 116545
  • [29] Vehicle Trajectory Reconstruction and Anomaly Detection Using Deep Learning
    Huang S.-C.
    Shao C.-F.
    Li J.
    Zhang X.-Y.
    Qian J.-P.
    Shao, Chun-Fu (cfshao@bjtu.edu.cn), 1600, Science Press (21): : 47 - 54
  • [30] An efficient system for anomaly detection using deep learning classifier
    A. R. Revathi
    Dhananjay Kumar
    Signal, Image and Video Processing, 2017, 11 : 291 - 299