On computing sparse generalized inverses

被引:0
|
作者
Ponte, Gabriel [1 ,2 ]
Fampa, Marcia [2 ]
Lee, Jon [1 ]
Xu, Luze [3 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[3] Univ Calif Davis, Davis, CA USA
基金
美国国家科学基金会;
关键词
Moore-Penrose pseudoinverse; Generalized inverse; Sparse optimization; Norm minimization; Least squares; Linear program;
D O I
10.1016/j.orl.2023.107058
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The M-P (Moore-Penrose) pseudoinverse is used in several linear-algebra applications. It is convenient to construct sparse block-structured matrices satisfying some relevant properties of the M-P pseudoinverse for specific applications. Aiming at row-sparse generalized inverses, we consider 2,1-norm minimization (and generalizations). We show that a 2,1-norm minimizing generalized inverse satisfies two additional M-P properties, including one needed for computing least-squares solutions. We present formulations related to finding row-sparse generalized inverses that can be solved very efficiently, which we verify numerically.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Computing generalized inverses of matrices by iterative methods based on splittings of matrices
    Chen, YL
    Tan, XY
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (01) : 309 - 325
  • [32] FAST PARALLEL ALGORITHMS FOR COMPUTING GENERALIZED INVERSES A+ AND AMN+
    WANG, GR
    QUAN, LS
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1988, 6 (04): : 348 - 354
  • [33] Iterative methods for computing the generalized inverses A((2))(T,S) of a matrix A
    Chen, YL
    APPLIED MATHEMATICS AND COMPUTATION, 1996, 75 (2-3) : 207 - 222
  • [34] PERFORMANCE AND STABILITY OF DIRECT METHODS FOR COMPUTING GENERALIZED INVERSES OF THE GRAPH LAPLACIAN
    Benzi, Michele
    Fika, Paraskevi
    Mitrouli, Marilena
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 53 : 439 - 458
  • [35] Exploiting higher computational efficiency index for computing outer generalized inverses
    Ma, Xiaoxia
    Shil, Sourav
    Soleymani, Fazlollah
    Nashine, Hemant Kumar
    APPLIED NUMERICAL MATHEMATICS, 2022, 175 : 18 - 28
  • [36] Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations
    Soleimani, Farahnaz
    Stanimirovic, Predrag S.
    Soleymani, Fazlollah
    ALGORITHMS, 2015, 8 (04) : 982 - 998
  • [37] Performance and stability of direct methods for computing generalized inverses of the graph laplacian
    Benzi M.
    Fika P.
    Mitrouli M.
    Electronic Transactions on Numerical Analysis, 2020, 53 : 439 - 458
  • [38] GENERALIZED INVERSES
    RABSON, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 779 - &
  • [39] GENERALIZED INVERSES
    Djordjevic, Dragan S.
    PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 13 - 32
  • [40] Generalized Inverses
    Rajko, Robert
    ACTA SCIENTIARUM MATHEMATICARUM, 2005, 71 (1-2): : 435 - 438