On computing sparse generalized inverses

被引:0
|
作者
Ponte, Gabriel [1 ,2 ]
Fampa, Marcia [2 ]
Lee, Jon [1 ]
Xu, Luze [3 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[3] Univ Calif Davis, Davis, CA USA
基金
美国国家科学基金会;
关键词
Moore-Penrose pseudoinverse; Generalized inverse; Sparse optimization; Norm minimization; Least squares; Linear program;
D O I
10.1016/j.orl.2023.107058
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The M-P (Moore-Penrose) pseudoinverse is used in several linear-algebra applications. It is convenient to construct sparse block-structured matrices satisfying some relevant properties of the M-P pseudoinverse for specific applications. Aiming at row-sparse generalized inverses, we consider 2,1-norm minimization (and generalizations). We show that a 2,1-norm minimizing generalized inverse satisfies two additional M-P properties, including one needed for computing least-squares solutions. We present formulations related to finding row-sparse generalized inverses that can be solved very efficiently, which we verify numerically.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Experimental analysis of local searches for sparse reflexive generalized inverses
    Marcia Fampa
    Jon Lee
    Gabriel Ponte
    Luze Xu
    Journal of Global Optimization, 2021, 81 : 1057 - 1093
  • [22] Experimental analysis of local searches for sparse reflexive generalized inverses
    Fampa, Marcia
    Lee, Jon
    Ponte, Gabriel
    Xu, Luze
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 81 (04) : 1057 - 1093
  • [23] A rapid and powerful iterative method for computing inverses of sparse tensors with applications
    Dehdezi, Eisa Khosravi
    Karimi, Saeed
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 415
  • [24] Combinatorial algorithms for computing column space bases that have sparse inverses
    Pinar, A
    Chow, E
    Pothen, A
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 22 : 122 - 145
  • [25] Combinatorial algorithms for computing column space bases that have sparse inverses
    Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
    不详
    不详
    不详
    Electron. Trans. Numer. Anal., 2006, (122-145):
  • [26] Computing generalized inverses using LU factorization of matrix product
    Stanimirovic, Predrag S.
    Tasic, Milan B.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (12) : 1865 - 1878
  • [27] Iterative methods for computing generalized inverses related with optimization methods
    Djordjevic, DS
    Stanimirovic, PS
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 78 : 257 - 272
  • [28] ON HERMITIAN GENERALIZED INVERSES AND POSITIVE SEMIDEFINITE GENERALIZED INVERSES
    Liu, Xifu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (04): : 443 - 459
  • [29] On Hermitian generalized inverses and positive semidefinite generalized inverses
    Xifu Liu
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 443 - 459
  • [30] A general class of arbitrary order iterative methods for computing generalized inverses
    Cordero, Alicia
    Soto-Quiros, Pablo
    Torregrosa, Juan R.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 409