Persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation

被引:4
|
作者
Zhang, Huiyang [1 ]
Xia, Yonghui [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Sine-Gordon equation; Traveling wave solution; Melnikov function; TRAVELING-WAVES; SOLITONS; BIFURCATIONS; DIFFUSION; EXISTENCE; DYNAMICS; PERIOD;
D O I
10.1016/j.aml.2023.108616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the geometric singular perturbation theory and the Melnikov method, we study the persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation. The explicit expression of the Melnikov function is given. Moreover, the monotonicity of the period function for unperturbed double sine-Gordon equation is investigated.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Perturbed soliton solutions of the sine-Gordon equation
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (12) : 2085 - 2091
  • [42] Wigner distribution of Sine-Gordon and Kink solitons
    Radhakrishnan, Ramkumar
    Ojha, Vikash Kumar
    MODERN PHYSICS LETTERS A, 2022, 37 (37-38)
  • [43] Multiply Kink and Anti-Kink Solutions for a Coupled Camassa-Holm Type Equation
    Li, Yuan-Li
    Zha, Qi-Lao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 66 (06) : 609 - 614
  • [44] Scattering of fermionic isodoublets on the sine-Gordon kink
    Loginov, A. Yu
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (08):
  • [45] SINE-GORDON MODEL FOR CLASSICAL KINK MECHANICS
    LEON, JJP
    REINISCH, G
    FERNANDEZ, JC
    PHYSICAL REVIEW B, 1983, 27 (09): : 5817 - 5818
  • [46] Structure and properties of four-kink multisolitons of the sine-Gordon equation
    A. M. Gumerov
    E. G. Ekomasov
    F. K. Zakir’yanov
    R. V. Kudryavtsev
    Computational Mathematics and Mathematical Physics, 2014, 54 : 491 - 504
  • [47] Dynamical properties of a kink of the Sine-Gordon equation trapped in a potential well
    Di Garbo, A
    Barbi, M
    Chillemi, S
    Fronzoni, L
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) : 5967 - 5978
  • [48] Structure and Properties of Four-Kink Multisolitons of the Sine-Gordon Equation
    Gumerov, A. M.
    Ekomasov, E. G.
    Zakir'yanov, F. K.
    Kudryavtsev, R. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (03) : 491 - 504
  • [49] Scattering of fermionic isodoublets on the sine-Gordon kink
    A. Yu. Loginov
    The European Physical Journal C, 82
  • [50] BROWNIAN-MOTION OF A SINE-GORDON KINK
    MARCHESONI, F
    WILLIS, CR
    PHYSICAL REVIEW A, 1987, 36 (09): : 4559 - 4562