Dynamical properties of a kink of the Sine-Gordon equation trapped in a potential well

被引:0
|
作者
Di Garbo, A
Barbi, M
Chillemi, S
Fronzoni, L
机构
[1] CNR, Ist Biofis, I-56010 Ghezzano, Pisa, Italy
[2] Ist Nazl Ott Appl, Florence, Italy
[3] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
关键词
D O I
10.1016/S0362-546X(01)00696-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamical properties of a kink of the Sine-Gordon equation trapped in a potential well and interacting with a periodic spatial inhomogeneity are investigated. It is shown that the description of the kink motion obtained by the adiabatic approximation breaks down. This fact is explained in term of changes in the kink form due to the presence of such perturbations. We will show that in the presence of spatial periodic inhomogeneity there are parameter ranges where complex behaviour of the kink dynamics is observed. Moreover, when the spatial periodic perturbation is switched off for each kink initial velocity the radiation emission corresponding to well defined wave number is inhibited.
引用
收藏
页码:5967 / 5978
页数:12
相关论文
共 50 条
  • [1] KINK ASYMPTOTICS OF THE PERTURBED SINE-GORDON EQUATION
    KISELEV, OM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 93 (01) : 1106 - 1111
  • [2] KINK AND ANTIKINK SOLITONS ON SINE-GORDON EQUATION
    Segovia Chaves, Francis Armando
    REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2012, 3 (01): : 6 - 11
  • [3] Perturbation theory for the kink of the sine-Gordon equation
    Tang, Y
    Wang, W
    PHYSICAL REVIEW E, 2000, 62 (06) : 8842 - 8845
  • [4] Structure and properties of four-kink multisolitons of the sine-Gordon equation
    A. M. Gumerov
    E. G. Ekomasov
    F. K. Zakir’yanov
    R. V. Kudryavtsev
    Computational Mathematics and Mathematical Physics, 2014, 54 : 491 - 504
  • [5] Structure and Properties of Four-Kink Multisolitons of the Sine-Gordon Equation
    Gumerov, A. M.
    Ekomasov, E. G.
    Zakir'yanov, F. K.
    Kudryavtsev, R. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (03) : 491 - 504
  • [6] On kink-dynamics of the perturbed sine-Gordon equation
    Maksimov, AG
    Pedersen, NF
    Christiansen, PL
    Molkov, JI
    Nekorkin, VI
    WAVE MOTION, 1996, 23 (02) : 203 - 213
  • [7] MULTIDIMENSIONAL KINK SOLUTIONS OF THE DOUBLE SINE-GORDON EQUATION
    BURT, PB
    LETTERE AL NUOVO CIMENTO, 1980, 28 (03): : 104 - 106
  • [8] Asymptotics for kink propagation in the discrete Sine-Gordon equation
    Cisneros, L. A.
    Minzoni, A. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) : 50 - 65
  • [9] DISCRETE RESONANCES OF SINE-GORDON SOLITONS TRAPPED IN A HARMONIC POTENTIAL WELL
    FERNANDEZ, JC
    LEON, JJ
    REINISCH, G
    PHYSICS LETTERS A, 1986, 114 (04) : 161 - 164
  • [10] Sine-Gordon kink lattice
    E. da Hora
    C. dos Santos
    Fabiano C. Simas
    The European Physical Journal C, 85 (5):