UAV Target Detection Algorithm Based on Improved YOLOv8

被引:29
|
作者
Wang, Feng [1 ]
Wang, Hongyuan [1 ]
Qin, Zhiyong [1 ]
Tang, Jiaying [1 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213000, Peoples R China
基金
中国国家自然科学基金;
关键词
UAV target detection; global attention mechanism; small target detection;
D O I
10.1109/ACCESS.2023.3325677
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since UAVs usually fly at higher altitudes, resulting in a more significant proportion of small targets after imaging, this poses a challenge to the target detection algorithm at this stage; in addition, the high-speed flight of UAVs causes a sense of blurring on the detected objects, which leads to difficulties in target feature extraction. To address the two problems presented above, we propose a UAV target detection algorithm based on improved YOLOv8. First, the small target detection structure (STC) is embedded in the network, which acts as a bridge between shallow and deep features to improve the collection of semantic information of small targets and enhance detection accuracy. Second, using the feature of global information of UAV imaging-focused targets, the global attention GAM is introduced to the bottom layer of YOLOv8m's backbone to prevent the loss of image feature information during sampling and thus increase the algorithm's detection performance by feeding back feature information of different dimension. The modified model effectively increases the detection of tiny targets with an mAP value of 39.3%, which is 4.4% higher than the baseline approach, according to experimental results on the VisDrone2021 dataset, and outperforms mainstream algorithms such as SSD and YOLO series, effectively increasing the detection performance of UAVs for small targets.
引用
收藏
页码:116534 / 116544
页数:11
相关论文
共 50 条
  • [31] A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8
    Du, Zongdong
    Feng, Xuefeng
    Li, Feng
    Xian, Qinglong
    Jia, Zhenhong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (02): : 2607 - 2627
  • [32] RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8
    Ding, Yuanming
    Jiang, Chen
    Song, Lin
    Liu, Fei
    Tao, Yunrui
    ELECTRONICS, 2024, 13 (11)
  • [33] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)
  • [34] Research on marine fl exible biological target detection based on improved YOLOv8 algorithm
    Tian, Yu
    Liu, Yanwen
    Lin, Baohang
    Li, Peng
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [35] Target Detection of Diamond Nanostructures Based on Improved YOLOv8 Modeling
    Guo, Fengxiang
    Guo, Xinyun
    Guo, Lei
    Wang, Yibao
    Wang, Qinhang
    Liu, Shousheng
    Zhang, Mei
    Zhang, Lili
    Gai, Zhigang
    NANOMATERIALS, 2024, 14 (13)
  • [36] A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8
    Nie, Haijiao
    Pang, Huanli
    Ma, Mingyang
    Zheng, Ruikai
    SENSORS, 2024, 24 (09)
  • [37] Research on Infrared Dim Target Detection Based on Improved YOLOv8
    Liu, Yangfan
    Li, Ning
    Cao, Lihua
    Zhang, Yunfeng
    Ni, Xu
    Han, Xiyu
    Dai, Deen
    REMOTE SENSING, 2024, 16 (16)
  • [38] YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
    Liu, Minggao
    Zhang, Ming
    Chen, Xinlan
    Zheng, Chunting
    Wang, Haifeng
    PROCESSES, 2024, 12 (05)
  • [39] Improved container damage detection algorithm of YOLOv8
    Yu, Ding
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 90 - 95
  • [40] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201