Overdetermined elliptic problems in nontrivial contractible domains of the sphere

被引:0
|
作者
Ruiz, David [1 ]
Sicbaldi, Pieralberto [1 ,2 ]
Wu, Jing [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, IMAG, Campus Fuentenueva, Granada 18071, Spain
[2] Aix Marseille Univ, CNRS, Cent Marseille I2M, Marseille, France
[3] Univ Granada, Fac Ciencias, Dept Anal Matematico, Granada 18071, Spain
关键词
Overdetermined boundary conditions; Semilinear elliptic problems; Bifurcation theory; 1ST EIGENVALUE; POSITIVE SOLUTIONS; EXTREMAL DOMAINS; EXISTENCE; UNIQUENESS; EQUATIONS; SYMMETRY; OPERATOR; SPACE;
D O I
10.1016/j.matpur.2023.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of nontrivial contractible domains Omega subset of S-d, d >= 2, such that the overdetermined elliptic problem {-epsilon Delta(g)u + u - u(p) = 0 in Omega, u > 0 in Omega, u = 0 on partial derivative Omega, partial derivative(nu)u = constant on partial derivative Omega, admits a positive solution. Here Delta(g) is the Laplace-Beltrami operator in the unit sphere S-d with respect to the canonical round metric g, epsilon > 0 is a small real parameter and 1 < p < d+2/d-2 (p > 1 if d = 2). These domains are perturbations of S-d \ D, where D is a small geodesic ball. This shows in particular that Serrin's theorem for overdetermined problems in the Euclidean space cannot be generalized to the sphere even for contractible domains. (c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:151 / 187
页数:37
相关论文
共 50 条