Deep learning-based BMI inference from structural brain MRI reflects brain alterations following lifestyle intervention

被引:1
|
作者
Finkelstein, Ofek [1 ]
Levakov, Gidon [1 ]
Kaplan, Alon [2 ,3 ]
Zelicha, Hila [2 ]
Meir, Anat Yaskolka [2 ]
Rinott, Ehud [2 ]
Tsaban, Gal [2 ,4 ]
Witte, Anja Veronica [5 ]
Blueher, Matthias [6 ]
Stumvoll, Michael [6 ]
Shelef, Ilan [2 ,4 ]
Shai, Iris [2 ,7 ]
Raviv, Tammy Riklin [8 ]
Avidan, Galia [9 ]
机构
[1] Ben Gurion Univ Negev, Dept Cognit & Brain Sci, Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Fac Hlth Sci, Hlth & Nutr Innovat Int Res Ctr, Beer Sheva, Israel
[3] Chaim Sheba Med Ctr Tel Hashomer, Ramat Gan, Israel
[4] Soroka Univ, Med Ctr, Beer Sheva, Israel
[5] Univ Leipzig, Max Planck Inst Human Cognit & Brain Sci & Cognit, Dept Neurol, Med Ctr, Leipzig, Germany
[6] Univ Leipzig, Dept Med, Leipzig, Germany
[7] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[8] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[9] Ben Gurion Univ Negev, Dept Psychol, Beer Sheva, Israel
基金
美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 加拿大健康研究院; 英国医学研究理事会;
关键词
biomarker; deep learning; MRI; obesity; ORBITOFRONTAL CORTEX; VISCERAL FAT; OBESITY; RISK; DEMENTIA; CHILDREN; VOLUME; AGE;
D O I
10.1002/hbm.26595
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Obesity is associated with negative effects on the brain. We exploit Artificial Intelligence (AI) tools to explore whether differences in clinical measurements following lifestyle interventions in overweight population could be reflected in brain morphology. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syndrome underwent an 18-month lifestyle intervention. Structural brain MRIs were acquired before and after the intervention. We utilized an ensemble learning framework to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related clinical measurements from brain MRIs. We revealed that patient-specific reduction in BMI predictions was associated with actual weight loss and was significantly higher in active diet groups compared to a control group. Moreover, explainable AI (XAI) maps highlighted brain regions contributing to BMI predictions that were distinct from regions associated with age prediction. Our DIRECT-PLUS analysis results imply that predicted BMI and its reduction are unique neural biomarkers for obesity-related brain modifications and weight loss. The brain-predicted BMI is a novel neural biomarker, which captures structural changes in the brain following lifestyle intervention. It correlates with other obesity-related clinical measures, and allows exploring the link between obesity, weight loss, and the brain. image
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A Comparative Study of Deep Learning-Based Whole-Brain Segmentation Algorithms for Head MRI Scans
    Gi, Y.
    Yoon, M.
    Jung, G. E.
    Ko, Y.
    Lim, H.
    Jo, Y.
    Hong, J.
    MEDICAL PHYSICS, 2024, 51 (10) : 7699 - 7700
  • [42] Brain MRI Deep Learning and Bayesian Inference System Augments Radiology Resident Performance
    Rudie, Jeffrey D.
    Duda, Jeffrey
    Duong, Michael Tran
    Chen, Po-Hao
    Xie, Long
    Kurtz, Robert
    Ware, Jeffrey B.
    Choi, Joshua
    Mattay, Raghav R.
    Botzolakis, Emmanuel J.
    Gee, James C.
    Bryan, R. Nick
    Cook, Tessa S.
    Mohan, Suyash
    Nasrallah, Ilya M.
    Rauschecker, Andreas M.
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 1049 - 1058
  • [43] Deep Learning Combine With Radiomics For Distinguishing Glioblastoma And Solitary Brain Metastasis Based On Structural MRI
    Zhang, Z.
    Zhou, R.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E687 - E687
  • [44] Brain MRI Deep Learning and Bayesian Inference System Augments Radiology Resident Performance
    Jeffrey D. Rudie
    Jeffrey Duda
    Michael Tran Duong
    Po-Hao Chen
    Long Xie
    Robert Kurtz
    Jeffrey B. Ware
    Joshua Choi
    Raghav R. Mattay
    Emmanuel J. Botzolakis
    James C. Gee
    R. Nick Bryan
    Tessa S. Cook
    Suyash Mohan
    Ilya M. Nasrallah
    Andreas M. Rauschecker
    Journal of Digital Imaging, 2021, 34 : 1049 - 1058
  • [45] Regional Brain Volume Changes in Catholic Nuns: A Cross-Sectional Study Using Deep Learning-Based Brain MRI Segmentation
    Chung, Ju-Hye
    Eun, Youngmi
    Ock, Sun Myeong
    Kim, Bo-Kyung
    Kim, Tae-Hong
    Kim, Donghyeon
    Park, Se Jin
    Im, Min-Kyun
    Kim, Se-Hong
    PSYCHIATRY INVESTIGATION, 2022, 19 (09) : 754 - +
  • [46] Deep RNN Learning for EEG based Functional Brain State Inference
    Patnaik, Suprava
    Moharkar, Lalita
    Chaudhari, Amogh
    2017 IEEE INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND CONTROL (ICAC3), 2017,
  • [47] Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs
    Huang, Xiaona
    Liu, Yang
    Li, Yuhan
    Qi, Keying
    Gao, Ang
    Zheng, Bowen
    Liang, Dong
    Long, Xiaojing
    SENSORS, 2023, 23 (02)
  • [48] Deep learning-based brain age prediction in normal aging and dementia
    Jeyeon Lee
    Brian J. Burkett
    Hoon-Ki Min
    Matthew L. Senjem
    Emily S. Lundt
    Hugo Botha
    Jonathan Graff-Radford
    Leland R. Barnard
    Jeffrey L. Gunter
    Christopher G. Schwarz
    Kejal Kantarci
    David S. Knopman
    Bradley F. Boeve
    Val J. Lowe
    Ronald C. Petersen
    Clifford R. Jack
    David T. Jones
    Nature Aging, 2022, 2 : 412 - 424
  • [49] An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain
    Shen, Dan Dan
    Bao, Shan Lei
    Wang, Yan
    Chen, Ying Chi
    Zhang, Yu Cheng
    Li, Xing Can
    Ding, Yu Chen
    Jia, Zhong Zheng
    PEDIATRIC RADIOLOGY, 2023, 53 (08) : 1685 - 1697
  • [50] Deep learning-based attenuation correction for brain PET with various radiotracers
    Fumio Hashimoto
    Masanori Ito
    Kibo Ote
    Takashi Isobe
    Hiroyuki Okada
    Yasuomi Ouchi
    Annals of Nuclear Medicine, 2021, 35 : 691 - 701