Deep learning-based BMI inference from structural brain MRI reflects brain alterations following lifestyle intervention

被引:1
|
作者
Finkelstein, Ofek [1 ]
Levakov, Gidon [1 ]
Kaplan, Alon [2 ,3 ]
Zelicha, Hila [2 ]
Meir, Anat Yaskolka [2 ]
Rinott, Ehud [2 ]
Tsaban, Gal [2 ,4 ]
Witte, Anja Veronica [5 ]
Blueher, Matthias [6 ]
Stumvoll, Michael [6 ]
Shelef, Ilan [2 ,4 ]
Shai, Iris [2 ,7 ]
Raviv, Tammy Riklin [8 ]
Avidan, Galia [9 ]
机构
[1] Ben Gurion Univ Negev, Dept Cognit & Brain Sci, Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Fac Hlth Sci, Hlth & Nutr Innovat Int Res Ctr, Beer Sheva, Israel
[3] Chaim Sheba Med Ctr Tel Hashomer, Ramat Gan, Israel
[4] Soroka Univ, Med Ctr, Beer Sheva, Israel
[5] Univ Leipzig, Max Planck Inst Human Cognit & Brain Sci & Cognit, Dept Neurol, Med Ctr, Leipzig, Germany
[6] Univ Leipzig, Dept Med, Leipzig, Germany
[7] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[8] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[9] Ben Gurion Univ Negev, Dept Psychol, Beer Sheva, Israel
基金
美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 加拿大健康研究院; 英国医学研究理事会;
关键词
biomarker; deep learning; MRI; obesity; ORBITOFRONTAL CORTEX; VISCERAL FAT; OBESITY; RISK; DEMENTIA; CHILDREN; VOLUME; AGE;
D O I
10.1002/hbm.26595
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Obesity is associated with negative effects on the brain. We exploit Artificial Intelligence (AI) tools to explore whether differences in clinical measurements following lifestyle interventions in overweight population could be reflected in brain morphology. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syndrome underwent an 18-month lifestyle intervention. Structural brain MRIs were acquired before and after the intervention. We utilized an ensemble learning framework to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related clinical measurements from brain MRIs. We revealed that patient-specific reduction in BMI predictions was associated with actual weight loss and was significantly higher in active diet groups compared to a control group. Moreover, explainable AI (XAI) maps highlighted brain regions contributing to BMI predictions that were distinct from regions associated with age prediction. Our DIRECT-PLUS analysis results imply that predicted BMI and its reduction are unique neural biomarkers for obesity-related brain modifications and weight loss. The brain-predicted BMI is a novel neural biomarker, which captures structural changes in the brain following lifestyle intervention. It correlates with other obesity-related clinical measures, and allows exploring the link between obesity, weight loss, and the brain. image
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Deep learning-based, fully automated, pediatric brain segmentation
    Kim, Min-Jee
    Hong, Eunpyeong
    Yum, Mi-Sun
    Lee, Yun-Jeong
    Kim, Jinyoung
    Ko, Tae-Sung
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [32] Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
    Estienne, Theo
    Lerousseau, Marvin
    Vakalopoulou, Maria
    Andres, Emilie Alvarez
    Battistella, Enzo
    Carre, Alexandre
    Chandra, Siddhartha
    Christodoulidis, Stergios
    Sahasrabudhe, Mihir
    Sun, Roger
    Robert, Charlotte
    Talbot, Hugues
    Paragios, Nikos
    Deutsch, Eric
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14 (14)
  • [33] Deep Learning-Based Brain Tumor Image Analysis for Segmentation
    Zahid Mansur
    Jyotismita Talukdar
    Thipendra P. Singh
    Chandan J. Kumar
    SN Computer Science, 6 (1)
  • [34] Explainable Concept Mappings of MRI: Revealing the Mechanisms Underlying Deep Learning-Based Brain Disease Classification
    Tinauer, Christian
    Damulina, Anna
    Sackl, Maximilian
    Soellradl, Martin
    Achtibat, Reduan
    Dreyer, Maximilian
    Pahde, Frederik
    Lapuschkin, Sebastian
    Schmidt, Reinhold
    Ropele, Stefan
    Samek, Wojciech
    Langkammer, Christian
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT II, XAI 2024, 2024, 2154 : 202 - 216
  • [35] Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification
    Tinauer, Christian
    Damulina, Anna
    Sackl, Maximilian
    Soellradl, Martin
    Achtibat, Reduan
    Dreyer, Maximilian
    Pahde, Frederik
    Lapuschkin, Sebastian
    Schmidt, Reinhold
    Ropele, Stefan
    Samek, Wojciech
    Langkammer, Christian
    arXiv,
  • [36] Improvement of Deep Learning-based Auto-detection of Brain Metastases by Integrating previous MRI Images
    Huang, Y.
    Bert, C.
    Sommer, P.
    Frey, B.
    Gaipl, U.
    Distel, L. V.
    Weissmann, T.
    Uder, M.
    Schmidt, M. A.
    Doerfler, A.
    Maier, A.
    Fietkau, R.
    Putz, F.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2022, 198 (SUPPL 1) : S6 - S6
  • [37] Deep learning-based reconstruction for three-dimensional volumetric brain MRI: a qualitative and quantitative assessment
    Kang, Yeseul
    Kim, Sang-Young
    Kim, Jun Hwee
    Son, Nak-Hoon
    Park, Chae Jung
    BMC MEDICAL IMAGING, 2025, 25 (01):
  • [38] "sCT-Feasibility" - a feasibility study for deep learning-based MRI-only brain radiotherapy
    Grigo, Johanna
    Szkitsak, Juliane
    Hoefler, Daniel
    Fietkau, Rainer
    Putz, Florian
    Bert, Christoph
    RADIATION ONCOLOGY, 2024, 19 (01)
  • [39] Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI
    Ghaffari, Hamed
    Tavakoli, Hassan
    Jahromi, Gila Pirzad
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1136):
  • [40] “sCT-Feasibility” - a feasibility study for deep learning-based MRI-only brain radiotherapy
    Johanna Grigo
    Juliane Szkitsak
    Daniel Höfler
    Rainer Fietkau
    Florian Putz
    Christoph Bert
    Radiation Oncology, 19