Deep learning-based BMI inference from structural brain MRI reflects brain alterations following lifestyle intervention

被引:1
|
作者
Finkelstein, Ofek [1 ]
Levakov, Gidon [1 ]
Kaplan, Alon [2 ,3 ]
Zelicha, Hila [2 ]
Meir, Anat Yaskolka [2 ]
Rinott, Ehud [2 ]
Tsaban, Gal [2 ,4 ]
Witte, Anja Veronica [5 ]
Blueher, Matthias [6 ]
Stumvoll, Michael [6 ]
Shelef, Ilan [2 ,4 ]
Shai, Iris [2 ,7 ]
Raviv, Tammy Riklin [8 ]
Avidan, Galia [9 ]
机构
[1] Ben Gurion Univ Negev, Dept Cognit & Brain Sci, Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Fac Hlth Sci, Hlth & Nutr Innovat Int Res Ctr, Beer Sheva, Israel
[3] Chaim Sheba Med Ctr Tel Hashomer, Ramat Gan, Israel
[4] Soroka Univ, Med Ctr, Beer Sheva, Israel
[5] Univ Leipzig, Max Planck Inst Human Cognit & Brain Sci & Cognit, Dept Neurol, Med Ctr, Leipzig, Germany
[6] Univ Leipzig, Dept Med, Leipzig, Germany
[7] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[8] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[9] Ben Gurion Univ Negev, Dept Psychol, Beer Sheva, Israel
基金
美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 加拿大健康研究院; 英国医学研究理事会;
关键词
biomarker; deep learning; MRI; obesity; ORBITOFRONTAL CORTEX; VISCERAL FAT; OBESITY; RISK; DEMENTIA; CHILDREN; VOLUME; AGE;
D O I
10.1002/hbm.26595
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Obesity is associated with negative effects on the brain. We exploit Artificial Intelligence (AI) tools to explore whether differences in clinical measurements following lifestyle interventions in overweight population could be reflected in brain morphology. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syndrome underwent an 18-month lifestyle intervention. Structural brain MRIs were acquired before and after the intervention. We utilized an ensemble learning framework to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related clinical measurements from brain MRIs. We revealed that patient-specific reduction in BMI predictions was associated with actual weight loss and was significantly higher in active diet groups compared to a control group. Moreover, explainable AI (XAI) maps highlighted brain regions contributing to BMI predictions that were distinct from regions associated with age prediction. Our DIRECT-PLUS analysis results imply that predicted BMI and its reduction are unique neural biomarkers for obesity-related brain modifications and weight loss. The brain-predicted BMI is a novel neural biomarker, which captures structural changes in the brain following lifestyle intervention. It correlates with other obesity-related clinical measures, and allows exploring the link between obesity, weight loss, and the brain. image
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Deep learning-based covert brain infarct detection from multiple MRI sequences
    Zhao, Sicheng
    Bagce, Hamid F.
    Spektor, Vadim
    Chou, Yen
    Gao, Ge
    Morales, Clarissa D.
    Yang, Hao
    Ma, Jingchen
    Schwartz, Lawrence H.
    Manly, Jennifer J.
    Mayeux, Richard P.
    Brickman, Adam M.
    Gutierrez, Jose D.
    Zhao, Binsheng
    NEUROCOMPUTING, 2023, 550
  • [2] Deep learning-based sCTs with uncertainty estimation from heterogeneous pediatric brain MRI
    Maspero, M.
    Bentvelzen, L. G.
    Savenije, M. H. F.
    Seravalli, E.
    Janssens, G. O. R.
    Van den Berg, C. A. T.
    Philippens, M. E. P.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S935 - S936
  • [3] Exploring Deep Learning-based Approaches for Brain Tumor Diagnosis from MRI Images
    Abdullah, Fasih
    Jamil, Akhtar
    Alazawi, Esraa Mohammed
    Hameed, Alaa Ali
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [4] Unveiling Fairness Biases in Deep Learning-Based Brain MRI Reconstruction
    Du, Yuning
    Xue, Yuyang
    Dharmakumar, Rohan
    Tsaftaris, Sotirios A.
    CLINICAL IMAGE-BASED PROCEDURES, FAIRNESS OF AI IN MEDICAL IMAGING, AND ETHICAL AND PHILOSOPHICAL ISSUES IN MEDICAL IMAGING, CLIP 2023, FAIMI 2023, EPIMI 2023, 2023, 14242 : 102 - 111
  • [5] Deep learning-based methods may minimize GBCA dosage in brain MRI
    Luo, Huanyu
    Zhang, Tao
    Gong, Nan-Jie
    Tamir, Jonthan
    Venkata, Srivathsa Pasumarthi
    Xu, Cheng
    Duan, Yunyun
    Zhou, Tao
    Zhou, Fuqing
    Zaharchuk, Greg
    Xue, Jing
    Liu, Yaou
    EUROPEAN RADIOLOGY, 2021, 31 (09) : 6419 - 6428
  • [6] Deep learning-based convolutional neural network for intramodality brain MRI synthesis
    Osman, Alexander F., I
    Tamam, Nissren M.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (04):
  • [7] Deep Learning-based Brain Tumour Segmentation
    Ventakasubbu, Pattabiraman
    Ramasubramanian, Parvathi
    IETE JOURNAL OF RESEARCH, 2023, 69 (06) : 3156 - 3164
  • [8] Machine Learning-Based Identification of Structural Brain Alterations in Adolescents With Major Depressive Disorder
    Bashford-Largo, Johannah
    Zhang, Ru
    Mathur, Avantika
    Elowsky, Jaimie
    Dominguez, Ahria
    Dobbertin, Matthew
    Blair, James
    Blair, Karina
    Bajaj, Sahil
    BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S228 - S228
  • [9] Exploring contrast generalisation in deep learning-based brain MRI-to-CT synthesis
    Nijskens, Lotte
    van den Berg, Cornelis A. T.
    Verhoeff, Joost J. C.
    Maspero, Matteo
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 112
  • [10] Usefulness of deep learning-based noise reduction for 1.5 T MRI brain images
    Tajima, T.
    Akai, H.
    Yasaka, K.
    Kunimatsu, A.
    Yamashita, Y.
    Akahane, M.
    Yoshioka, N.
    Abe, O.
    Ohtomo, K.
    Kiryu, S.
    CLINICAL RADIOLOGY, 2023, 78 (01) : E13 - E21