COLIMITS IN ENRICHED ?-CATEGORIES AND DAY CONVOLUTION

被引:0
|
作者
Hinich, Vladimir [1 ]
机构
[1] Univ Haifa, Dept Math, Mt Carmel, IL-3498838 Hefa, Israel
来源
关键词
enriched categories; Day convolution; left-tensored categories;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a monoidal infinity-category with colimits. In this paper we study colimits of M-functors A -> B where B is left-tensored over M and A is an M -enriched category. We prove that the enriched Yoneda embedding Y : A -> PM(A) yields a universal M-functor. In case when A has a certain monoidal structure, the category of enriched presheaves PM(A) inherits the same monoidal structure and the enriched Yoneda embedding acquires the structure of universal monoidal M-functor.
引用
收藏
页数:59
相关论文
共 50 条
  • [41] A CONSTRUCTION OF CERTAIN WEAK COLIMITS AND AN EXACTNESS PROPERTY OF THE 2-CATEGORY OF CATEGORIES
    Descotte, M. Exm
    Dubuc, E. J.
    Szyld, M.
    THEORY AND APPLICATIONS OF CATEGORIES, 2018, 33 : 193 - 215
  • [42] STRICTIFICATION OF CATEGORIES WEAKLY ENRICHED IN SYMMETRIC MONOIDAL CATEGORIES
    Guillou, Bertrand J.
    THEORY AND APPLICATIONS OF CATEGORIES, 2010, 24 : 564 - 579
  • [43] An equivalence between enriched ∞-categories and ∞-categories with weak action
    Heine, Hadrian
    ADVANCES IN MATHEMATICS, 2023, 417
  • [44] MORITA CONTEXTS OF ENRICHED CATEGORIES
    FISHERPALMQUIST, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) : 55 - 60
  • [45] Fuzzy logic and enriched categories
    Dautovic, S.
    Zekic, M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2021, 18 (03): : 1 - 11
  • [46] Enriched categories as a free cocompletion
    Garner, Richard
    Shulman, Michael
    ADVANCES IN MATHEMATICS, 2016, 289 : 1 - 94
  • [47] Duoidally Enriched Freyd Categories
    Heunen, Chris
    Sigal, Jesse
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, RAMICS 2023, 2023, 13896 : 241 - 257
  • [48] ON THE HOMOTOPY THEORY OF ENRICHED CATEGORIES
    Berger, Clemens
    Moerdijk, Ieke
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (03): : 805 - 846
  • [49] SEGAL ENRICHED CATEGORIES AND APPLICATIONS
    Bacard, Hugo, V
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 1227 - 1267
  • [50] Yoneda lemma for enriched ∞-categories
    Hinich, Vladimir
    ADVANCES IN MATHEMATICS, 2020, 367