Enriched categories as a free cocompletion

被引:0
|
作者
Garner, Richard [1 ]
Shulman, Michael [2 ,3 ]
机构
[1] Macquarie Univ, Dept Comp, N Ryde, NSW 2109, Australia
[2] Inst Adv Study, Dept Math, Olden Lane, Princeton, NJ 08540 USA
[3] Univ San Diego, Dept Math & Comp Sci, San Diego, CA 92110 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Enriched bicategory theory; Enriched categories; Free cocompletions; Equipments; MONADS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper has two objectives. The first is to develop the theory of bicategories enriched in a monoidal bicategory categorifying the classical theory of categories enriched in a monoidal category up to a description of the free cocompletion of an enriched bicategory under a class of weighted bicolimits. The second objective is to describe a universal property of the process assigning to a monoidal category V the equipment of V-enriched categories, functors, transformations, and modules; we do so by considering, more generally, the assignation sending an equipment C to the equipment of C-enriched categories, functors, transformations, and modules, and exhibiting this as the free cocompletion of a certain kind of enriched bicategory under a certain class of weighted bicolimits. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 94
页数:94
相关论文
共 50 条
  • [1] COCOMPLETION OF RESTRICTION CATEGORIES
    Garner, Richard
    Lin, Daniel
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 809 - 844
  • [2] Restriction categories as enriched categories
    Cockett, Robin
    Garner, Richard
    THEORETICAL COMPUTER SCIENCE, 2014, 523 : 37 - 55
  • [3] Enriched model categories and presheaf categories
    Guillou, Bertrand J.
    May, J. Peter
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 37 - 91
  • [4] Internal Enriched Categories
    Enrico Ghiorzi
    Applied Categorical Structures, 2022, 30 : 947 - 968
  • [5] ENRICHED INDEXED CATEGORIES
    Shulman, Michael
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 616 - 695
  • [6] Grothendieck Enriched Categories
    Imamura, Yuki
    APPLIED CATEGORICAL STRUCTURES, 2022, 30 (05) : 1017 - 1041
  • [7] Grothendieck Enriched Categories
    Yuki Imamura
    Applied Categorical Structures, 2022, 30 : 1017 - 1041
  • [8] Rectification of enriched ∞-categories
    Haugseng, Rune
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (04): : 1931 - 1982
  • [9] Enriched reedy categories
    Angeltveit, Vigleik
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2323 - 2332
  • [10] Enriched accessible categories
    Borceux, F
    Quinteriro, C
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (03) : 489 - 501