Justificatory explanations: a step beyond explainability in machine learning

被引:0
|
作者
Guersenzvaig, A. [1 ]
Casacuberta, D. [2 ]
机构
[1] ELISAVA Barcelona, Sch Design & Engn, Barcelona, Spain
[2] Autonomous Univ Barcelona, Philosophy, Barcelona, Spain
来源
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
ckad160.87
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Robust Counterfactual Explanations in Machine Learning: A Survey
    Jiang, Junqi
    Leofante, Francesco
    Rago, Antonio
    Toni, Francesca
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 8086 - 8094
  • [42] Robustness in Machine Learning Explanations: Does It Matter?
    Hancox-Li, Leif
    FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2020, : 640 - 647
  • [43] Transparency, auditability, and explainability of machine learning models in credit scoring
    Buecker, Michael
    Szepannek, Gero
    Gosiewska, Alicja
    Biecek, Przemyslaw
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2022, 73 (01) : 70 - 90
  • [44] dalex: Responsible machine learning with interactive explainability and fairness in python
    Baniecki, Hubert
    Kretowicz, Wojciech
    Piatyszek, Piotr
    Wisniewski, Jakub
    Biecek, Przemyslaw
    Journal of Machine Learning Research, 2021, 22 : 1 - 7
  • [45] Causal scientific explanations from machine learning
    Stefan Buijsman
    Synthese, 202
  • [46] ExplainExplore: Visual Exploration of Machine Learning Explanations
    Collaris, Dennis
    van Wijk, Jarke J.
    2020 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2020, : 26 - 35
  • [47] Explaining Explanations: An Overview of Interpretability of Machine Learning
    Gilpin, Leilani H.
    Bau, David
    Yuan, Ben Z.
    Bajwa, Ayesha
    Specter, Michael
    Kagal, Lalana
    2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 80 - 89
  • [48] Demystifying the black box: an overview of explainability methods in machine learning
    Kinger S.
    Kulkarni V.
    International Journal of Computers and Applications, 2024, 46 (02) : 90 - 100
  • [49] How robust are ensemble machine learning explanations?
    Calzarossa, Maria Carla
    Giudici, Paolo
    Zieni, Rasha
    NEUROCOMPUTING, 2025, 630
  • [50] Leveraging explanations in interactive machine learning: An overview
    Teso, Stefano
    Alkan, Oznur
    Stammer, Wolfgang
    Daly, Elizabeth
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6