Justificatory explanations: a step beyond explainability in machine learning

被引:0
|
作者
Guersenzvaig, A. [1 ]
Casacuberta, D. [2 ]
机构
[1] ELISAVA Barcelona, Sch Design & Engn, Barcelona, Spain
[2] Autonomous Univ Barcelona, Philosophy, Barcelona, Spain
来源
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
ckad160.87
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Strategic Predictions and Explanations By Machine Learning
    Wu, Caesar
    Li, Jian
    Xu, Jingjing
    Bouvry, Pascal
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 268 - 273
  • [22] Machine Learning Explainability Through Comprehensible Decision Trees
    Blanco-Justicia, Alberto
    Domingo-Ferrer, Josep
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2019, 2019, 11713 : 15 - 26
  • [23] Towards Explainability in Machine Learning: The Formal Methods Way
    Gossen, Frederik
    Margaria, Tiziana
    Steffen, Bernhard
    IT PROFESSIONAL, 2020, 22 (04) : 8 - 12
  • [24] Explanation sets: A general framework for machine learning explainability
    Fernandez, Ruben R.
    de Diego, Isaac Martin
    Moguerza, Javier M.
    Herrera, Francisco
    INFORMATION SCIENCES, 2022, 617 : 464 - 481
  • [25] A-XAI: adversarial machine learning for trustable explainability
    Nishita Agrawal
    Isha Pendharkar
    Jugal Shroff
    Jatin Raghuvanshi
    Akashdip Neogi
    Shruti Patil
    Rahee Walambe
    Ketan Kotecha
    AI and Ethics, 2024, 4 (4): : 1143 - 1174
  • [26] Interpretability and Explainability of Machine Learning Models: Achievements and Challenges
    Henriques, J.
    Rocha, T.
    de Carvalho, P.
    Silva, C.
    Paredes, S.
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 : 81 - 94
  • [27] ESG ratings explainability through machine learning techniques
    Del Vitto, Alessandro
    Marazzina, Daniele
    Stocco, Davide
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [28] The Role of Explainability in Assuring Safety of Machine Learning in Healthcare
    Jia, Yan
    McDermid, John
    Lawton, Tom
    Habli, Ibrahim
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (04) : 1746 - 1760
  • [29] Guest editorial: Explainability of machine learning in methodologies and applications
    Li, Zhong
    Unger, Herwig
    Kyamakya, Kyandoghere
    KNOWLEDGE-BASED SYSTEMS, 2023, 264
  • [30] Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability
    Herm, Lukas-Valentin
    Heinrich, Kai
    Wanner, Jonas
    Janiesch, Christian
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2023, 69