Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models

被引:2
|
作者
Lambert, Philippe [1 ,2 ]
Gressani, Oswaldo [3 ]
机构
[1] Univ Liege, Inst Math, Allee Decouverte 12 B37, B-4000 Liege, Belgium
[2] Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles ISBA, Ottignies Louvain La Neuv, Belgium
[3] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSta, Data Sci Inst, Hasselt, Belgium
关键词
Additive model; Bayesian P-splines; Laplace approximation; Skewness; INFERENCE;
D O I
10.1177/1471082X231181173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Laplace P-splines (LPS) combine the P-splines smoother and the Laplace approximation in a unifying framework for fast and flexible inference under the Bayesian paradigm. The Gaussian Markov random field prior assumed for penalized parameters and the Bernstein-von Mises theorem typically ensure a razor-sharp accuracy of the Laplace approximation to the posterior distribution of these quantities. This accuracy can be seriously compromised for some unpenalized parameters, especially when the information synthesized by the prior and the likelihood is sparse. Therefore, we propose a refined version of the LPS methodology by splitting the parameter space in two subsets. The first set involves parameters for which the joint posterior distribution is approached from a non-Gaussian perspective with an approximation scheme tailored to capture asymmetric patterns, while the posterior distribution for the penalized parameters in the complementary set undergoes the LPS treatment with Laplace approximations. As such, the dichotomization of the parameter space provides the necessary structure for a separate treatment of model parameters, yielding improved estimation accuracy as compared to a setting where posterior quantities are uniformly handled with Laplace. In addition, the proposed enriched version of LPS remains entirely sampling-free, so that it operates at a computing speed that is far from reach to any existing Markov chain Monte Carlo approach. The methodology is illustrated on the additive proportional odds model with an application on ordinal survey data.
引用
收藏
页码:409 / 423
页数:15
相关论文
共 50 条
  • [41] Estimation of a Piecewise Exponential Model by Bayesian P-splines Techniques for Prognostic Assessment and Prediction
    Marano, Giuseppe
    Boracchi, Patrizia
    Biganzoli, Elia M.
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 : 183 - 198
  • [42] Laplace approximations and Bayesian information criteria in possibly misspecified models
    Miyata, Yoichi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (24) : 12240 - 12258
  • [43] On Penalty Parameter Selection for Estimating Network Models
    Wysocki, Anna C.
    Rhemtulla, Mijke
    MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (02) : 288 - 302
  • [44] Bayesian spectral density estimation using P-splines with quantile-based knot placement
    Patricio Maturana-Russel
    Renate Meyer
    Computational Statistics, 2021, 36 : 2055 - 2077
  • [45] Quantitative Analysis of Dynamic Contrast-Enhanced MR Images Based on Bayesian P-Splines
    Schmid, Volker J.
    Whitcher, Brandon
    Padhani, Anwar R.
    Yang, Guang-Zhong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (06) : 789 - 798
  • [46] Bayesian spectral density estimation using P-splines with quantile-based knot placement
    Maturana-Russel, Patricio
    Meyer, Renate
    COMPUTATIONAL STATISTICS, 2021, 36 (03) : 2055 - 2077
  • [47] Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns
    Goicoa, T.
    Adin, A.
    Etxeberria, J.
    Militino, A. F.
    Ugarte, M. D.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 384 - 403
  • [48] Semi-parametric analysis of dynamic contrast-enhanced MRI using Bayesian P-splines
    Schmid, Volker J.
    Whitcher, Brandon
    Yang, Guang-Zhong
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 1, 2006, 4190 : 679 - 686
  • [49] Bayesian P-splines and advanced computing in R for a changepoint analysis on spatio-temporal point processes
    Altieri, L.
    Cocchi, D.
    Greco, F.
    Illian, J. B.
    Scott, E. M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (13) : 2531 - 2545
  • [50] Bayesian analysis of measurement error models using integrated nested Laplace approximations
    Muff, Stefanie
    Riebler, Andrea
    Held, Leonhard
    Rue, Havard
    Saner, Philippe
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2015, 64 (02) : 231 - 252