Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models

被引:2
|
作者
Lambert, Philippe [1 ,2 ]
Gressani, Oswaldo [3 ]
机构
[1] Univ Liege, Inst Math, Allee Decouverte 12 B37, B-4000 Liege, Belgium
[2] Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles ISBA, Ottignies Louvain La Neuv, Belgium
[3] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSta, Data Sci Inst, Hasselt, Belgium
关键词
Additive model; Bayesian P-splines; Laplace approximation; Skewness; INFERENCE;
D O I
10.1177/1471082X231181173
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Laplace P-splines (LPS) combine the P-splines smoother and the Laplace approximation in a unifying framework for fast and flexible inference under the Bayesian paradigm. The Gaussian Markov random field prior assumed for penalized parameters and the Bernstein-von Mises theorem typically ensure a razor-sharp accuracy of the Laplace approximation to the posterior distribution of these quantities. This accuracy can be seriously compromised for some unpenalized parameters, especially when the information synthesized by the prior and the likelihood is sparse. Therefore, we propose a refined version of the LPS methodology by splitting the parameter space in two subsets. The first set involves parameters for which the joint posterior distribution is approached from a non-Gaussian perspective with an approximation scheme tailored to capture asymmetric patterns, while the posterior distribution for the penalized parameters in the complementary set undergoes the LPS treatment with Laplace approximations. As such, the dichotomization of the parameter space provides the necessary structure for a separate treatment of model parameters, yielding improved estimation accuracy as compared to a setting where posterior quantities are uniformly handled with Laplace. In addition, the proposed enriched version of LPS remains entirely sampling-free, so that it operates at a computing speed that is far from reach to any existing Markov chain Monte Carlo approach. The methodology is illustrated on the additive proportional odds model with an application on ordinal survey data.
引用
收藏
页码:409 / 423
页数:15
相关论文
共 50 条
  • [31] Gradient-based smoothing parameter estimation for neural P-splines
    Dammann, Lea M.
    Freitag, Marei
    Thielmann, Anton
    Saefken, Benjamin
    COMPUTATIONAL STATISTICS, 2025,
  • [32] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    TEST, 2014, 23 (01) : 153 - 194
  • [33] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    TEST, 2014, 23 : 153 - 194
  • [34] Locally adaptive Bayesian P-splines with a Normal-Exponential-Gamma prior
    Scheipl, Fabian
    Kneib, Thomas
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3533 - 3552
  • [35] Spatially adaptive Bayesian penalized regression splines (P-splines) (vol 14, pg 378, 2005)
    Baladandayuthapani, V
    Mallick, B. K.
    Carroll, R. J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) : 515 - 515
  • [36] Non-parametric regression on compositional covariates using Bayesian P-splines
    Francesca Bruno
    Fedele Greco
    Massimo Ventrucci
    Statistical Methods & Applications, 2016, 25 : 75 - 88
  • [37] Non-parametric regression on compositional covariates using Bayesian P-splines
    Bruno, Francesca
    Greco, Fedele
    Ventrucci, Massimo
    STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 75 - 88
  • [38] Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm
    Xose Rodriguez-Alvarez, Maria
    Lee, Dae-Jin
    Kneib, Thomas
    Durban, Maria
    Eilers, Paul
    STATISTICS AND COMPUTING, 2015, 25 (05) : 941 - 957
  • [39] Boosting additive models using component-wise P-Splines
    Schmid, Matthias
    Hothorn, Torsten
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 298 - 311
  • [40] Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm
    María Xosé Rodríguez-Álvarez
    Dae-Jin Lee
    Thomas Kneib
    María Durbán
    Paul Eilers
    Statistics and Computing, 2015, 25 : 941 - 957