A Detector-Independent Quality Score for Cell Segmentation Without Ground Truth in 3D Live Fluorescence Microscopy

被引:2
|
作者
Vanaret, Jules [1 ,2 ]
Dupuis, Victoria [2 ]
Lenne, Pierre-Francois [2 ]
Richard, Frederic [1 ]
Tlili, Sham [2 ]
Roudot, Philippe [1 ]
机构
[1] Aix Marseille Univ, Turing Ctr Livingsyst, CNRS, I2M UMR 7373, F-13284 Marseille, France
[2] Aix Marseille Univ, Turing Ctr Living Syst, CNRS, IBDM UMR 7288, F-13284 Marseille, France
关键词
Image segmentation; Three-dimensional displays; Microscopy; Task analysis; Motion segmentation; Measurement uncertainty; Annotations; Biophysics; biological cells; Index Terms; dynamics; error analysis; fluorescence; image motion analysis; image segmentation; microscopy; particle tracking; stochastic processes; PARTICLE TRACKING;
D O I
10.1109/JSTQE.2023.3275108
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep-learning techniques have enabled a breakthrough in the robustness and execution time of cell segmentation algorithms for fluorescence microscopy datasets. However, the heterogeneity, dimensionality and ever-growing size of 3D+time datasets challenge the evaluation of measurements. Here we propose an estimator of cell segmentation accuracy that is detector-independent and does not need any ground-truth nor priors on object appearance. To assign a segmentation quality score, our method learns the dynamic parameters of each cell to detect inconsistencies in local displacements induced by segmentation errors. Using simulations that approximate the dynamics of cellular aggregates, we demonstrate the score ability to rank the performance of detectors up to 40% of false positives. We evaluated our method on two experimental datasets presenting contrasting scenarios in density and dynamics (stem cells nuclei in organoids and carcinoma cells in a collagen matrix) using two state-of-the-art deep-learning-based segmentation tools (Stardist3D and Cellpose). Our score is able to appropriately rank their performances as reflected by accuracy (centroid matching) and precision (segmentation overlap).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Automated human induced pluripotent stem cell culture and sample preparation for 3D live-cell microscopy
    Gregor, Benjamin W.
    Coston, Mackenzie E.
    Adams, Ellen M.
    Arakaki, Joy
    Borensztejn, Antoine
    Do, Thao P.
    Fuqua, Margaret A.
    Haupt, Amanda
    Hendershott, Melissa C.
    Leung, Winnie
    Mueller, Irina A.
    Nath, Aditya
    Nelson, Angelique M.
    Rafelski, Susanne M.
    Sanchez, Emmanuel E.
    Swain-Bowden, Madison J.
    Tang, W. Joyce
    Thirstrup, Derek J.
    Wiegraebe, Winfried
    Whitney, Brian P.
    Yan, Calysta
    Gunawardane, Ruwanthi N.
    Gaudreault, Nathalie
    NATURE PROTOCOLS, 2024, 19 (02) : 565 - 594
  • [42] 3D-Cell-Annotator: an open-source active surface tool for single-cell segmentation in 3D microscopy images
    Tasnadi, Ervin A.
    Toth, Timea
    Kovacs, Maria
    Diosdi, Akos
    Pampaloni, Francesco
    Molnar, Jozsef
    Piccinini, Filippo
    Horvath, Peter
    BIOINFORMATICS, 2020, 36 (09) : 2948 - 2949
  • [43] SINGLE-CELLULAR DYNAMIC MECHANICAL ANALYSIS OF LIVE 3D ORGANOIDS UNDER LIGHT-SHEET FLUORESCENCE MICROSCOPY
    Kidambi, Venkatanathan
    Tomizawa, Yuji
    Surti, Manav
    Modarelli, Mitchell
    Hoshino, Kazunori
    2024 IEEE 37TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2024, : 330 - 333
  • [44] Morphometric analysis of aerobic Eimeria bovis sporogony using live cell 3D holotomographic microscopy imaging
    Lopez-Osorio, Sara
    Velasquez, Zahady D.
    Conejeros, Ivan
    Taubert, Anja
    Hermosilla, Carlos
    PARASITOLOGY RESEARCH, 2022, 121 (04) : 1179 - 1189
  • [45] Morphometric analysis of aerobic Eimeria bovis sporogony using live cell 3D holotomographic microscopy imaging
    Sara Lopez-Osorio
    Zahady D. Velasquez
    Iván Conejeros
    Anja Taubert
    Carlos Hermosilla
    Parasitology Research, 2022, 121 : 1179 - 1189
  • [46] SEGMENTATION OF CELL NUCLEI IN 3D MICROSCOPY IMAGES BASED ON LEVEL SET DEFORMABLE MODELS AND CONVEX MINIMIZATION
    Bergeest, Jan-Philip
    Rohr, Karl
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 637 - 640
  • [47] MitoGen: A Framework for Generating 3D Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Microscopy
    Svoboda, David
    Ulman, Vladimir
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (01) : 310 - 321
  • [48] Combined optical fluorescence microscopy and X-ray tomography reveals substructures in cell nuclei in 3D
    Wittmeier, Andrew
    Bernhardt, Marten
    Robisch, Anna-Lena
    Cassini, Chiara
    Osterhoff, Markus
    Salditt, Tim
    Koester, Sarah
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (09) : 4954 - 4969
  • [49] Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy
    Corinne Lorenzo
    Céline Frongia
    Raphaël Jorand
    Jérôme Fehrenbach
    Pierre Weiss
    Amina Maandhui
    Guillaume Gay
    Bernard Ducommun
    Valérie Lobjois
    Cell Division, 6
  • [50] Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy
    Lorenzo, Corinne
    Frongia, Celine
    Jorand, Raphael
    Fehrenbach, Jerome
    Weiss, Pierre
    Maandhui, Amina
    Gay, Guillaume
    Ducommun, Bernard
    Lobjois, Valerie
    CELL DIVISION, 2011, 6