For G a finite group acting linearly on A(2), the equivariant Hilbert scheme Hilb'[A(2)/G] is a natural resolution of singularities of Sym'(A(2)/G). In this paper, we study the topology of Hilb'[A(2)/G] for abelian G and how it depends on the group G. We prove that the topological invariants of Hilb'[A(2)/G] are periodic or quasipolynomial in the order of the group Gas G varies over certain families of abelian subgroups of GL(2). This is done by using the Bialynicki-Birula decomposition to compute topological invariants in terms of the combinatorics of a certain set of partitions.
机构:
Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
Braden, Tom
Chen, Linda
论文数: 0引用数: 0
h-index: 0
机构:
Ohio State Univ, Dept Math, Columbus, OH 43210 USA
Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
Chen, Linda
Sottile, Frank
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA