The topology of equivariant Hilbert schemes

被引:0
|
作者
Bejleri, Dori [1 ]
Zaimi, Gjergji [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
MCKAY CORRESPONDENCE; QUIVER VARIETIES; POINTS; NUMBERS; SMOOTH;
D O I
10.1007/s40687-023-00393-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For G a finite group acting linearly on A(2), the equivariant Hilbert scheme Hilb'[A(2)/G] is a natural resolution of singularities of Sym'(A(2)/G). In this paper, we study the topology of Hilb'[A(2)/G] for abelian G and how it depends on the group G. We prove that the topological invariants of Hilb'[A(2)/G] are periodic or quasipolynomial in the order of the group Gas G varies over certain families of abelian subgroups of GL(2). This is done by using the Bialynicki-Birula decomposition to compute topological invariants in terms of the combinatorics of a certain set of partitions.
引用
收藏
页数:23
相关论文
共 50 条