Petal number of torus knots of type (r,r+2)

被引:1
|
作者
Lee, Hwa Jeong [1 ]
Jin, Gyo Taek [2 ]
机构
[1] Dongguk Univ WISE, Dept Math Educ, Gyeongju 38066, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Torus knot; petal projection; petal number; grid diagram;
D O I
10.1142/S0218216523400072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let r be an odd integer, r = 3. Then the petal number of the torus knot of type (r, r + 2) is equal to 2r + 3.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] Constraining the f ( R , T ) = R+2λT cosmological model using recent observational data
    Myrzakulov, N.
    Koussour, M.
    Alfedeel, Alnadhief H. A.
    Hassan, E. I.
    CHINESE PHYSICS C, 2023, 47 (11)
  • [23] Some Tauberian Theorems for Weighted Means of Double Integrals on R+2
    Findik, Goksen
    Canak, Ibrahim
    INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2018), 2019, 2086
  • [24] Curves of degree r+2 in Pr:: Cohomological, geometric, and homological aspects
    Brodmann, M
    Schenzel, P
    JOURNAL OF ALGEBRA, 2001, 242 (02) : 577 - 623
  • [25] An infinite family of Legendrian torus knots distinguished by cube number
    McCarty, Ben
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (01) : 162 - 174
  • [26] A SHARP UPPER BOUND FOR REGION UNKNOTTING NUMBER OF TORUS KNOTS
    Vikash, Siwach
    Prabhakar, Madeti
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2013, 22 (05)
  • [27] Dynamics of general barotropic stellar fluid in the framework of R+2αT gravity
    Mosani, Karim
    Samanta, Gauranga C.
    MODERN PHYSICS LETTERS A, 2020, 35 (12)
  • [28] Control of cell and petal morphogenesis by R2R3 MYB transcription factors
    Baumann, Kim
    Perez-Rodriguez, Maria
    Bradley, Desmond
    Venail, Julien
    Bailey, Paul
    Jin, Hailing
    Koes, Ronald
    Roberts, Keith
    Martin, Cathie
    DEVELOPMENT, 2007, 134 (09): : 1691 - 1701
  • [29] Type-two invariants for knots in the solid torus
    Bataineh, Khaled
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (08)
  • [30] Polynomial representation of torus knots of type (p, q)
    Mishra, R
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (05) : 667 - 700