An experiment on an automated literature survey of data-driven speech enhancement methods

被引:0
|
作者
dos Santos, Arthur [1 ]
Pereira, Jayr [2 ]
Nogueira, Rodrigo [2 ]
Masiero, Bruno [1 ]
Tavallaey, Shiva Sander [3 ,4 ]
Zea, Elias [4 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Commun Acoust Lab, BR-13083970 Campinas, SP, Brazil
[2] NeuralMind, BR-13083898 Campinas, SP, Brazil
[3] ABB Corp Res, SE-72226 Vasteras, Sweden
[4] KTH Royal Inst Technol, Dept Engn Mech, Marcus Wallenberg Lab Sound & Vibrat Res, SE-10044 Stockholm, Sweden
来源
ACTA ACUSTICA | 2024年 / 8卷
基金
巴西圣保罗研究基金会;
关键词
Speech enhancement methods; Data-driven acoustics; Literature survey; Natural language processing; Large language models; INDUCED HEARING-LOSS; SOURCE LOCALIZATION; ART;
D O I
10.1051/aacus/2023067
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The increasing number of scientific publications in acoustics, in general, presents difficulties in conducting traditional literature surveys. This work explores the use of a generative pre-trained transformer (GPT) model to automate a literature survey of 117 articles on data-driven speech enhancement methods. The main objective is to evaluate the capabilities and limitations of the model in providing accurate responses to specific queries about the papers selected from a reference human-based survey. While we see great potential to automate literature surveys in acoustics, improvements are needed to address technical questions more clearly and accurately.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] An automated data-driven platform for buildings simulation
    Aryai, Vahid
    Mahdavi, Nariman
    West, Sam
    Henze, Gregor
    PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, BUILDSYS 2023, 2023, : 61 - 68
  • [32] Empowering scientists with data-driven automated experimentation
    Jonghee Yang
    Mahshid Ahmadi
    Nature Synthesis, 2023, 2 : 462 - 463
  • [33] A Data-Driven Speech Enhancement Method Based on Modeled Long-Range Temporal Dynamics
    Hao, Yue
    Bao, Changchun
    Bao, Feng
    Deng, Feng
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1790 - 1794
  • [34] Categorizing Data-Driven Methods for Test Scenario Generation to Assess Automated Driving Systems
    Baeumler, Maximilian
    Linke, Felix
    Prokop, Guenther
    IEEE ACCESS, 2024, 12 : 52030 - 52050
  • [35] Data-Driven Image Color Theme Enhancement
    Wang, Baoyuan
    Yu, Yizhou
    Wong, Tien-Tsin
    Chen, Chun
    Xu, Ying-Qing
    ACM TRANSACTIONS ON GRAPHICS, 2010, 29 (06):
  • [36] Data-driven exploration of orographic enhancement of precipitation
    Foresti, L.
    Kanevski, M.
    Pozdnoukhov, A.
    ADVANCES IN SCIENCE AND RESEARCH, 2011, 6 : 129 - 135
  • [37] Empirical Data-Driven Modeling for Dependability Enhancement
    Malek, Miroslaw
    LADC: 2009 4TH LATIN-AMERICAN SYMPOSIUM ON DEPENDABLE COMPUTING, 2009, : 138 - 138
  • [38] Data Driven Suppression Rule for Speech Enhancement
    Tashev, Ivan
    Slaney, Malcolm
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [39] Data-Driven Pause Prediction for Speech Synthesis in Storytelling Style Speech
    Sarkar, Parakrant
    Rao, K. Sreenivasa
    2015 TWENTY FIRST NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2015,
  • [40] AUTOMATED GESTURE RECOGNITION USING APPLIED LINGUISTICS WITH DATA-DRIVEN DEEP LEARNING FOR ARABIC SPEECH TRANSLATION
    Alahmari, Saad
    Al-Onazi, Badriyya B.
    Aljohani, Nouf J.
    Alzahrani, Khadija Abdullah
    Alotaibi, Faiz Abdullah
    Almanea, Manar
    Alnfiai, Mrim M.
    Mahgoub, Hany
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (09N10)