An experiment on an automated literature survey of data-driven speech enhancement methods

被引:0
|
作者
dos Santos, Arthur [1 ]
Pereira, Jayr [2 ]
Nogueira, Rodrigo [2 ]
Masiero, Bruno [1 ]
Tavallaey, Shiva Sander [3 ,4 ]
Zea, Elias [4 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Commun Acoust Lab, BR-13083970 Campinas, SP, Brazil
[2] NeuralMind, BR-13083898 Campinas, SP, Brazil
[3] ABB Corp Res, SE-72226 Vasteras, Sweden
[4] KTH Royal Inst Technol, Dept Engn Mech, Marcus Wallenberg Lab Sound & Vibrat Res, SE-10044 Stockholm, Sweden
来源
ACTA ACUSTICA | 2024年 / 8卷
基金
巴西圣保罗研究基金会;
关键词
Speech enhancement methods; Data-driven acoustics; Literature survey; Natural language processing; Large language models; INDUCED HEARING-LOSS; SOURCE LOCALIZATION; ART;
D O I
10.1051/aacus/2023067
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The increasing number of scientific publications in acoustics, in general, presents difficulties in conducting traditional literature surveys. This work explores the use of a generative pre-trained transformer (GPT) model to automate a literature survey of 117 articles on data-driven speech enhancement methods. The main objective is to evaluate the capabilities and limitations of the model in providing accurate responses to specific queries about the papers selected from a reference human-based survey. While we see great potential to automate literature surveys in acoustics, improvements are needed to address technical questions more clearly and accurately.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Data-driven enhancement of facial attractiveness
    Leyvand, Tommer
    Cohen-Or, Daniel
    Dror, Gideon
    Lischinski, Dani
    ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [22] Data-Driven Methods for Spectator Symmetry Plane Estimation in CBM Experiment at FAIR
    Golosov, Oleg
    Selyuzhenkov, Ilya
    Kashirin, Evgeny
    PARTICLES, 2021, 4 (03) : 354 - 360
  • [23] LPV-based control for automated driving using data-driven methods
    Fenyes, Daniel
    Nemeth, Balazs
    Gaspar, Peter
    IFAC PAPERSONLINE, 2020, 53 (02): : 13898 - 13903
  • [24] Data-Driven Content Analysis of Social Media: A Systematic Overview of Automated Methods
    Schwartz, H. Andrew
    Ungar, Lyle H.
    ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE, 2015, 659 (01): : 78 - 94
  • [25] Data-driven approaches in FinTech: a survey
    Tian, Xin
    He, Jing Selena
    Han, Meng
    INFORMATION DISCOVERY AND DELIVERY, 2021, 49 (02) : 123 - 135
  • [26] A Survey on Data-Driven Video Completion
    Ilan, S.
    Shamir, A.
    COMPUTER GRAPHICS FORUM, 2015, 34 (06) : 60 - 85
  • [27] Data-driven background model for the CUORE experiment
    Adams, D. Q.
    Alduino, C.
    Alfonso, K.
    Avignone, F. T., III
    Azzolini, O.
    Bari, G.
    Bellini, F.
    Benato, G.
    Beretta, M.
    Biassoni, M.
    Branca, A.
    Brofferio, C.
    Bucci, C.
    Camilleri, J.
    Caminata, A.
    Campani, A.
    Cao, J.
    Capelli, S.
    Capelli, C.
    Cappelli, L.
    Cardani, L.
    Carniti, P.
    Casali, N.
    Celi, E.
    Chiesa, D.
    Clemenza, M.
    Cremonesi, O.
    Creswick, R. J.
    D'Addabbo, A.
    Dafinei, I.
    Del Corso, F.
    Dell'Oro, S.
    Di Domizio, S.
    Di Lorenzo, S.
    Dixon, T.
    Dompe, V.
    Fang, D. Q.
    Fantini, G.
    Faverzani, M.
    Ferri, E.
    Ferroni, F.
    Fiorini, E.
    Franceschi, M. A.
    Freedman, S. J.
    Fu, S. H.
    Fujikawa, B. K.
    Ghislandi, S.
    Giachero, A.
    Girola, M.
    Gironi, L.
    PHYSICAL REVIEW D, 2024, 110 (05)
  • [28] A Survey on the Methods and Results of Data-Driven Koopman Analysis in the Visualization of Dynamical Systems
    Parmar, Nishaal
    Refai, Hazem H.
    Runolfsson, Thordur
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (03) : 723 - 738
  • [29] Empowering scientists with data-driven automated experimentation
    Yang, Jonghee
    Ahmadi, Mahshid
    NATURE SYNTHESIS, 2023, 2 (06): : 462 - 463
  • [30] A survey of methods for revealing and overcoming weaknesses of data-driven Natural Language Understanding
    Schlegel, Viktor
    Nenadic, Goran
    Batista-Navarro, Riza
    NATURAL LANGUAGE ENGINEERING, 2023, 29 (01) : 1 - 31