Compact Modeling of Advanced Gate-All-Around Nanosheet FETs Using Artificial Neural Network

被引:2
|
作者
Zhao, Yage [1 ]
Xu, Zhongshan [1 ]
Tang, Huawei [1 ]
Zhao, Yusi [1 ]
Tang, Peishun [1 ]
Ding, Rongzheng [1 ]
Zhu, Xiaona [1 ]
Zhang, David Wei [1 ,2 ]
Yu, Shaofeng [1 ,2 ]
机构
[1] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[2] Natl Integrated Circuit Innovat Ctr, Shanghai 201203, Peoples R China
关键词
gate-all-around (GAA) Nanosheet FETs (NSFETs); compact model; artificial neural network (ANN); TCAD simulation; FINFET;
D O I
10.3390/mi15020218
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
As the architecture of logic devices is evolving towards gate-all-around (GAA) structure, research efforts on advanced transistors are increasingly desired. In order to rapidly perform accurate compact modeling for these ultra-scaled transistors with the capability to cover dimensional variations, neural networks are considered. In this paper, a compact model generation methodology based on artificial neural network (ANN) is developed for GAA nanosheet FETs (NSFETs) at advanced technology nodes. The DC and AC characteristics of GAA NSFETs with various physical gate lengths (Lg), nanosheet widths (Wsh) and thicknesses (Tsh), as well as different gate voltages (Vgs) and drain voltages (Vds) are obtained through TCAD simulations. Subsequently, a high-precision ANN model architecture is evaluated. A systematical study on the impacts of ANN size, activation function, learning rate, and epoch (the times of complete pass through the entire training dataset) on the accuracy of ANN models is conducted, and a shallow neural network configuration for generating optimal ANN models is proposed. The results clearly show that the optimized ANN model can reproduce the DC and AC characteristics of NSFETs very accurately with a fitting error (MSE) of 0.01.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Performance and Design Considerations for Gate-All-Around Stacked-NanoWires FETs
    Barraud, S.
    Lapras, V.
    Previtali, B.
    Samson, M. P.
    Lacord, J.
    Martinie, S.
    Jaud, M. -A.
    Athanasiou, S.
    Triozon, F.
    Rozeau, O.
    Hartmann, J. M.
    Vizioz, C.
    Comboroure, C.
    Andrieu, F.
    Barb, J. C.
    Vinet, M.
    Ernst, T.
    2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2017,
  • [42] Unveiling Thermal Cross Talk in 5nm Gate-All-Around Stacked Nanosheet FETs: A Machine Learning Perspective
    Kumar, Vivek
    Anand, Nischal
    Rai, Rohit
    Chauhan, Sneha
    Patel, Jyoti
    PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, VLSID 2024 AND 23RD INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS, ES 2024, 2024, : 49 - 54
  • [43] Modeling of Negative Bias Temperature Instability (NBTI) for Gate-all-around (GAA) Stacked Nanosheet Technology
    Liu, Leitao
    Fang, Jingtian
    Pal, Ashish
    Asenov, Plamen
    Bajaj, Mohit
    Deng, Bei
    Lin, Xi-Wei
    Mahapatra, Souvik
    Kengeri, Subi
    Bazizi, El Mehdi
    2024 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, IRPS 2024, 2024,
  • [44] A Comprehensive Technique Based on Machine Learning for Device and Circuit Modeling of Gate-All-Around Nanosheet Transistors
    Butola, Rajat
    Li, Yiming
    Kola, Sekhar Reddy
    IEEE OPEN JOURNAL OF NANOTECHNOLOGY, 2023, 4 : 181 - 194
  • [45] A Machine Learning Approach to Modeling Intrinsic Parameter Fluctuation of Gate-All-Around Si Nanosheet MOSFETs
    Butola, Rajat
    Li, Yiming
    Kola, Sekhar Reddy
    IEEE ACCESS, 2022, 10 : 71356 - 71369
  • [46] Impact of Strain on Sub-3 nm Gate-All-Around CMOS Logic Circuit Performance Using a Neural Compact Modeling Approach
    Lee, Ji Hwan
    Kim, Kihwan
    Rim, Kyungjin
    Chong, Soogine
    Cho, Hyunbo
    Oh, Saeroonter
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 770 - 774
  • [47] Gate-Last I/O Transistors based on Stacked Gate-All-Around Nanosheet Architecture for Advanced Logic Technologies
    Bhuiyan, M.
    Kim, M.
    Zhou, H.
    Lo, H.
    Siddiqui, S.
    Stolfi, M.
    Guarini, T.
    Pujari, R.
    Davey, E.
    Stuckert, E.
    Li, J.
    Chou, A.
    Zhao, K.
    Wang, M.
    Guo, D.
    Colombeau, B.
    Loubet, N.
    Haran, B.
    Bu, H.
    2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
  • [48] NBTI Impact of Surface Orientation in Stacked Gate-All-Around Nanosheet Transistor
    Zhou, Huimei
    Wang, Miaomiao
    Zhang, Jingyun
    Watanabe, Koji
    Durfee, Curtis
    Mochizuki, Shogo
    Bao, Ruqiang
    Southwick, Richard
    Bhuiyan, Maruf
    Veeraraghavan, Basker
    2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [49] Defect spectroscopy of sidewall interfaces in gate-all-around silicon nanosheet FET
    Lee, Kookjin
    Kim, Yeonsu
    Lee, Hyebin
    Park, Sojeong
    Lee, Yongwoo
    Joo, Min-Kyu
    Ji, Hyunjin
    Lee, Jaewoo
    Chun, Jungu
    Sung, Moonsoo
    Cho, Young-Hoon
    Kim, Doyoon
    Choi, Junhee
    Lee, Jae Woo
    Jeon, Dae-Young
    Choi, Sung-Jin
    Kim, Gyu-Tae
    NANOTECHNOLOGY, 2021, 32 (16)
  • [50] Configurable Logic Gates Using Polarity-Controlled Silicon Nanowire Gate-All-Around FETs
    De Marchi, Michele
    Zhang, Jian
    Frache, Stefano
    Sacchetto, Davide
    Gaillardon, Pierre-Emmanuel
    Leblebici, Yusuf
    De Micheli, Giovanni
    IEEE ELECTRON DEVICE LETTERS, 2014, 35 (08) : 880 - 882