A New Evapotranspiration-Based Drought Index for Flash Drought Identification and Monitoring

被引:7
|
作者
Li, Peng [1 ,2 ,3 ]
Jia, Li [1 ,2 ]
Lu, Jing [2 ]
Jiang, Min [2 ]
Zheng, Chaolei [2 ]
机构
[1] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
flash drought; evapotranspiration-based drought index; evaporative stress percentile; drought monitoring; SHORT-TERM DROUGHTS; PRECIPITATION DEFICIT; EVAPORATIVE DEMAND; RIVER-BASIN; ONSET; RECONSTRUCTION; METHODOLOGY; SENSITIVITY; MICROWAVE;
D O I
10.3390/rs16050780
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flash droughts, a type of extreme event characterized by the sudden onset and rapid intensification of drought conditions with severe impacts on ecosystems, have become more frequent in recent years due to global warming. The drought index is an effective way to monitor drought and mitigate its negative impact on human production and life. This study presents a new flash drought identification and monitoring method based on the evapotranspiration-based drought index, i.e., the evaporative stress percentile (ESP). This ESP-based method considers both the rate of the rapid intensification and each phase of flash drought development, which allows it to be used quantitative assessment of flash drought characteristics including detailed information on the onset, development, termination, and intensity. The ESP is evaluated using the soil moisture percentile (SMP) derived from the GLDAS-Noah soil moisture data. The results show that there was good agreement between the ESP and SMP across most of China, with correlation coefficient values above 0.8 and MAE values below 10 percentile/week. The ESP was then used to identify flash droughts in China and compared with the Precipitation Anomaly Percentage (PAP) and the SMP for three cases of typical flash drought events in three different regions and years with different land covers. It demonstrates the robustness of the ESP for detecting flash droughts in different geographical regions, for different land cover types, and for different climatic characteristics. This method is applied to characterize historical flash droughts in 1979-2018 in China, and the results show that flash droughts in China occur most frequently in the transitional climate zone between humid and arid regions in Northern China. This study contributes to a better understanding of flash drought development and supports to decision-makers in providing early warnings for flash droughts.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A novel composite drought index combining precipitation, temperature and evapotranspiration used for drought monitoring in the Huang-Huai-Hai Plain
    Li, Jiale
    Li, Yu
    Yin, Lei
    Zhao, Quanhua
    AGRICULTURAL WATER MANAGEMENT, 2024, 291
  • [42] Wet-environment Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment and monitoring
    Khoshnazar, Ali
    Perez, Gerald A. Corzo
    Mercado, Vitali Diaz
    Aminzadeh, Milad
    Pinedad, Roberto Adolfo Ceron
    HYDROLOGY RESEARCH, 2022, 53 (11): : 1393 - 1413
  • [43] Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring
    Begueria, Santiago
    Vicente-Serrano, Sergio M.
    Reig, Fergus
    Latorre, Borja
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2014, 34 (10) : 3001 - 3023
  • [44] Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China
    Yao, Ning
    Li, Yi
    Dong, Qin'ge
    Li, Linchao
    Peng, Lingling
    Feng, Hao
    LAND DEGRADATION & DEVELOPMENT, 2020, 31 (02) : 266 - 282
  • [45] Assessing the response of vegetation photosynthesis to flash drought events based on a new identification framework
    Yang, Liyan
    Wang, Weiguang
    Wei, Jia
    AGRICULTURAL AND FOREST METEOROLOGY, 2023, 339
  • [46] Monitoring agricultural drought using combined drought index in India
    Chattopadhyay, N.
    Malathi, K.
    Tidke, Nivedita
    Attri, S. D.
    Ray, Kamaljit
    JOURNAL OF EARTH SYSTEM SCIENCE, 2020, 129 (01)
  • [47] Integrated Drought Index (IDI) for Drought Monitoring and Assessment in India
    Shah, Deep
    Mishra, Vimal
    WATER RESOURCES RESEARCH, 2020, 56 (02)
  • [48] Monitoring agricultural drought using combined drought index in India
    N Chattopadhyay
    K Malathi
    Nivedita Tidke
    S D Attri
    Kamaljit Ray
    Journal of Earth System Science, 2020, 129
  • [49] Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
    Lili Zhao
    Lusheng Li
    Yanbin Li
    Huayu Zhong
    Fang Zhang
    Junzhen Zhu
    Yibo Ding
    Journal of Arid Land, 2023, 15 : 1421 - 1438
  • [50] Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
    Zhao, Lili
    Li, Lusheng
    Li, Yanbin
    Zhong, Huayu
    Zhang, Fang
    Zhu, Junzhen
    Ding, Yibo
    JOURNAL OF ARID LAND, 2023, 15 (12) : 1421 - 1438