Wet-environment Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment and monitoring

被引:3
|
作者
Khoshnazar, Ali [1 ]
Perez, Gerald A. Corzo [1 ,2 ]
Mercado, Vitali Diaz [1 ,2 ]
Aminzadeh, Milad [3 ]
Pinedad, Roberto Adolfo Ceron [4 ]
机构
[1] IHE Delft Inst Water Educ, Delft, Netherlands
[2] Delft Univ Technol, Delft, Netherlands
[3] Hamburg Univ Technol, Inst Geo Hydroinformat, Hamburg, Germany
[4] Minist Environm & Nat Resources MARN, San Salvador, El Salvador
来源
HYDROLOGY RESEARCH | 2022年 / 53卷 / 11期
关键词
agricultural drought; drought analysis; drought assessment; drought index; drought monitoring; Lempa River basin; mutual information; WEAP; WEPSI; wet-environment evapotranspiration; COMPLEMENTARY RELATIONSHIP; CLIMATE-CHANGE; RIVER-BASIN; EVAPORATION; SEVERITY; AREA;
D O I
10.2166/nh.2022.062
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Drought assessment and monitoring are essential for its proper management. Drought indices play a fundamental role in this. This research introduces the Wet-environment Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment and monitoring. WEPSI incorporates water supply and demand into the drought index calculation. WEPSI considers precipitation (P) for water supply and wet-environment evapotranspiration (ETw) for water demand. We use an asymmetric complementary relationship to calculate ETw with actual (ETa) and potential evapotranspiration (ETp). WEPSI is tested in the transboundary Lempa River basin in the Central American dry corridor. ETw is estimated based on evapotranspiration data calculated using the Water Evaluation And Planning (WEAP) system hydrological model. To investigate the performance of WEPSI, we compare it with two well-known meteorological indices (Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index), together with a hydrological index (Standardized Runoff Index), in terms of statistical metrics and mutual information (MI). We compare WEPSI-derived droughts and historical information, including crop production, cereal yield, and the Oceanic Nino Index (ONI). Results show WEPSI has the highest correlation and MI, and the lowest deviation. It is consistent with the records of the crop production index, cereal yield, and the ONI. Findings show that WEPSI can be used for agricultural drought assessments.
引用
收藏
页码:1393 / 1413
页数:21
相关论文
共 50 条
  • [1] Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh
    Md Giashuddin Miah
    Hasan Muhammad Abdullah
    Changyoon Jeong
    Environmental Monitoring and Assessment, 2017, 189
  • [2] Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh
    Miah, Md Giashuddin
    Abdullah, Hasan Muhammad
    Jeong, Changyoon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2017, 189 (11)
  • [3] Drought monitoring in Croatia using the standardized precipitation-evapotranspiration index
    Loncar-Petrinjak, Ivan
    Pasaric, Zoran
    Kalin, Ksenija Cindric
    GEOFIZIKA, 2024, 41 (01) : 1 - 23
  • [4] A Drought Index: The Standardized Precipitation Evapotranspiration Irrigation Index
    He, Liupeng
    Tong, Liang
    Zhou, Zhaoqiang
    Gao, Tianao
    Ding, Yanan
    Ding, Yibo
    Zhao, Yiyang
    Fan, Wei
    WATER, 2022, 14 (13)
  • [5] A drought index: The standardized precipitation evapotranspiration runoff index
    Wang, Long
    Yu, Hang
    Yang, Maoling
    Yang, Rui
    Gao, Rui
    Wang, Ying
    JOURNAL OF HYDROLOGY, 2019, 571 : 651 - 668
  • [6] Drought monitoring based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in the arid zone of Balochistan province, Pakistan
    Qaisrani Z.N.
    Nuthammachot N.
    Techato K.
    Asadullah
    Arabian Journal of Geosciences, 2021, 14 (1)
  • [7] Modification of the standardized precipitation evapotranspiration index for drought evaluation
    Ma, Mingwei
    Ren, Liliang
    Ma, He
    Jiang, Shanhu
    Yuan, Fei
    Liu, Yi
    Yang, Xiaoli
    CLIMATE AND LAND SURFACE CHANGES IN HYDROLOGY, 2013, 359 : 302 - 308
  • [8] Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia
    Isia, Ismallianto
    Hadibarata, Tony
    Jusoh, Muhammad Noor Hazwan
    Bhattacharjya, Rajib Kumar
    Shahedan, Noor Fifinatasha
    Bouaissi, Aissa
    Fitriyani, Norma Latif
    Syafrudin, Muhammad
    SUSTAINABILITY, 2023, 15 (01)
  • [9] Drought assessment and monitoring in Jordan using the standardized precipitation index
    Husam A. Abu Hajar
    Yasmin Z. Murad
    Khaldoun M. Shatanawi
    Bashar M. Al-Smadi
    Yousef A. Abu Hajar
    Arabian Journal of Geosciences, 2019, 12
  • [10] Drought assessment and monitoring in Jordan using the standardized precipitation index
    Abu Hajar, Husam A.
    Murad, Yasmin Z.
    Shatanawi, Khaldoun M.
    Al-Smadi, Bashar M.
    Abu Hajar, Yousef A.
    ARABIAN JOURNAL OF GEOSCIENCES, 2019, 12 (14)