Effect of carbon and oxygen on the high-temperature properties of silicon carbide-hafnium carbide nanocomposite fiber

被引:11
|
作者
Bae, Seong-Gun [1 ,3 ]
Kim, Sanghun [1 ,3 ]
Jeong, Handeul [2 ,3 ]
Lee, Yoonjoo [2 ]
Jeong, Yeong-Geun [3 ]
Shin, Dong-Geun [1 ]
机构
[1] Korea Inst Ceram Engn & Technol, Convergence Transport Mat Ctr, Jinju 52851, South Korea
[2] Korea Inst Ceram Engn & Technol, Semicond Mat Ctr, Jinju 52851, South Korea
[3] Pusan Natl Univ, Dept Convergence, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
B; Nanocomposites; C; Creep; Thermal properties; D; Carbides; RAMAN-SPECTROSCOPY; SIC FIBERS; TENSILE; CONVERSION; POLYMER; PYROLYSIS; MECHANISM; DIAMOND;
D O I
10.1016/j.jeurceramsoc.2022.11.023
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The polymer-derived ceramics (PDCs) technique enables relatively low-temperature fabrication of Si-based ce-ramics, with silicon carbide fiber as a representative product. Polycarbosilane (PCS) has Si-C backbone structures and can be converted to silicon carbide. In the PDCs method, residual or excess carbon is generated from the precursor (C/Si ratio = 2 for polycarbosilane). Because of the non-stoichiometry of SiC, the physicochemical properties of polymer-derived SiC are inferior to those of conventional monolithic SiC. Herein, a silicon carbide-hafnium carbide nanocomposite fiber was optimized by crosslinking oxygen into the PCS fiber by regulating the oxidation curing time. During pyrolysis, carbothermal reduction, and sintering, carbon was removed by reaction with hydrogen and cross-linked oxygen. Non-destructive techniques (X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and high-temperature thermomechanical analysis) were used to investigate the effects of excess carbon. The microstructure of the near-stoichiometric SiC-HfC nanocomposite fiber was more densified, with superior high-temperature properties.
引用
收藏
页码:1385 / 1396
页数:12
相关论文
共 50 条
  • [42] HIGH-TEMPERATURE TENSILE PROPERTIES OF MOLYBDENUM AND A MOLYBDENUM-0.5-PERCENT HAFNIUM CARBIDE ALLOY
    LUO, A
    PARK, JJ
    JACOBSON, DL
    TSAO, BH
    RAMALINGAM, ML
    SCRIPTA METALLURGICA ET MATERIALIA, 1993, 29 (06): : 729 - 732
  • [43] NICALON CONTINUOUS SILICON-CARBIDE FIBER FOR COMPOSITES AND HIGH-TEMPERATURE FIBROUS PRODUCTS
    DIDRICHSONS, P
    AMERICAN CERAMIC SOCIETY BULLETIN, 1983, 62 (08): : 872 - 872
  • [44] High-temperature tensile properties and oxidation behavior of carbon fiber reinforced silicon carbide bolts in a simulated re-entry environment
    Mei, Hui
    Cheng, Laifei
    Ke, Qingqing
    Zhang, Litong
    CARBON, 2010, 48 (11) : 3007 - 3013
  • [45] High-temperature stability of low-oxygen silicon carbide fiber heat-treated under different atmosphere
    T. Shimoo
    K. Okamura
    M. Ito
    M. Takeda
    Journal of Materials Science, 2000, 35 : 3733 - 3739
  • [46] High-temperature stability of low-oxygen silicon carbide fiber heat-treated under different atmosphere
    Shimoo, T
    Okamura, K
    Ito, M
    Takeda, M
    JOURNAL OF MATERIALS SCIENCE, 2000, 35 (15) : 3733 - 3739
  • [47] Oxidation of hafnium carbide and titanium carbide single crystals with the formation of carbon at high temperatures and low oxygen pressures
    Shimada, S
    Yunazar, F
    Otani, S
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (04) : 721 - 728
  • [48] Silicon carbide/carbon nanocomposite for negatronic applications
    Gouadria, S.
    Dahman, H.
    Najeh, I.
    Alyamani, A.
    El Mir, L.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (10) : 7397 - 7406
  • [49] Formation of silicon carbide nanocrystals by high-temperature carbonization of porous silicon
    Yu. S. Nagornov
    B. M. Kostishko
    S. N. Mikov
    Sh. R. Atazhanov
    A. V. Zolotov
    E. S. Pchelintseva
    Technical Physics, 2007, 52 : 1093 - 1097
  • [50] Formation of silicon carbide nanocrystals by high-temperature carbonization of porous silicon
    Nagornov, Yu. S.
    Kostishko, B. M.
    Mikov, S. N.
    Atazhanov, Sh. R.
    Zolotov, A. V.
    Pchelintseva, E. S.
    TECHNICAL PHYSICS, 2007, 52 (08) : 1093 - 1097