Effect of carbon and oxygen on the high-temperature properties of silicon carbide-hafnium carbide nanocomposite fiber

被引:11
|
作者
Bae, Seong-Gun [1 ,3 ]
Kim, Sanghun [1 ,3 ]
Jeong, Handeul [2 ,3 ]
Lee, Yoonjoo [2 ]
Jeong, Yeong-Geun [3 ]
Shin, Dong-Geun [1 ]
机构
[1] Korea Inst Ceram Engn & Technol, Convergence Transport Mat Ctr, Jinju 52851, South Korea
[2] Korea Inst Ceram Engn & Technol, Semicond Mat Ctr, Jinju 52851, South Korea
[3] Pusan Natl Univ, Dept Convergence, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
B; Nanocomposites; C; Creep; Thermal properties; D; Carbides; RAMAN-SPECTROSCOPY; SIC FIBERS; TENSILE; CONVERSION; POLYMER; PYROLYSIS; MECHANISM; DIAMOND;
D O I
10.1016/j.jeurceramsoc.2022.11.023
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The polymer-derived ceramics (PDCs) technique enables relatively low-temperature fabrication of Si-based ce-ramics, with silicon carbide fiber as a representative product. Polycarbosilane (PCS) has Si-C backbone structures and can be converted to silicon carbide. In the PDCs method, residual or excess carbon is generated from the precursor (C/Si ratio = 2 for polycarbosilane). Because of the non-stoichiometry of SiC, the physicochemical properties of polymer-derived SiC are inferior to those of conventional monolithic SiC. Herein, a silicon carbide-hafnium carbide nanocomposite fiber was optimized by crosslinking oxygen into the PCS fiber by regulating the oxidation curing time. During pyrolysis, carbothermal reduction, and sintering, carbon was removed by reaction with hydrogen and cross-linked oxygen. Non-destructive techniques (X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and high-temperature thermomechanical analysis) were used to investigate the effects of excess carbon. The microstructure of the near-stoichiometric SiC-HfC nanocomposite fiber was more densified, with superior high-temperature properties.
引用
收藏
页码:1385 / 1396
页数:12
相关论文
共 50 条
  • [21] HIGH-TEMPERATURE SILICON CARBIDE Characterization of State-of-the-Art Silicon Carbide Power Transistors
    Dimarino, Christina
    Burgos, Rolando
    Boroyevich, Dushan
    IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2015, 9 (03) : 19 - 30
  • [22] THE EFFECT OF A TANTALUM CARBIDE DISPERSION ON THE HIGH-TEMPERATURE PROPERTIES OF CHROMIUM
    RYAN, NE
    WILMS, GR
    JOURNAL OF THE LESS-COMMON METALS, 1964, 6 (03): : 201 - 206
  • [23] High temperature oxidation of additively manufactured silicon carbide/carbon fiber nanocomposites
    Al-Ajrash, Saja M. Nabat
    Browning, Charles
    Eckerle, Rose
    Cao, Li
    Bradford-Vialva, Robyn L.
    Klosterman, Donald
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (06) : 3602 - 3609
  • [24] High temperature oxidation of two- and three-dimensional hafnium carbide and silicon carbide coatings
    Verdon, C.
    Szwedek, O.
    Allemand, A.
    Jacques, S.
    Le Petitcorps, Y.
    David, P.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (04) : 879 - 887
  • [25] Carbon nanotube array thermal interfaces for high-temperature silicon carbide devices
    Cola, Baratunde A.
    Xu, Xianfan
    Fisher, Timothy S.
    Capano, Michael A.
    Amama, Placidus B.
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2008, 12 (03) : 228 - 237
  • [26] Silicon nitride/silicon carbide nanocomposite materials: fabrication and mechanical properties at high temperature.
    Plisnier, M
    Canonne, V
    Descamps, JC
    Poorteman, M
    Descamps, P
    Cambier, F
    EURO CERAMICS VII, PT 1-3, 2002, 206-2 : 1105 - 1108
  • [27] Room- and high-temperature thermal conductivity of silicon carbide fiber-reinforced silicon carbide composites with oxide sintering additives
    Yoshida, K
    Imai, M
    Yano, T
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2001, 109 (10) : 863 - 867
  • [28] Integrated circuits in silicon carbide for high-temperature applications
    Carl-Mikael Zetterling
    MRS Bulletin, 2015, 40 : 431 - 438
  • [29] Integrated circuits in silicon carbide for high-temperature applications
    Zetterling, Carl-Mikael
    MRS BULLETIN, 2015, 40 (05) : 431 - 438
  • [30] A High-Temperature Gate Driver for Silicon Carbide MOSFET
    Nayak, Parthasarathy
    Pramanick, Sumit Kumar
    Rajashekara, Kaushik
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (03) : 1955 - 1964