On the L2 boundedness of pseudo-multipliers for Hermite expansions

被引:3
|
作者
Ly, Fu Ken [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Learning Hub, Sydney, NSW 2006, Australia
关键词
Hermite operator; Calderon-Vaillancourt theorem; Pseudo-multiplier; Gaussian pseudo-differential; operator; SPACES;
D O I
10.1016/j.jfa.2023.110220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give various conditions for Hermite pseudo-multipliers to be bounded on L2(Rn). As a by-product we also give new results for pseudo-multipliers in the Gaussian measure setting. One of our key tools is a new integration by-parts formula for Hermite expansions. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org /licenses /by /4 .0/).
引用
收藏
页数:27
相关论文
共 50 条
  • [41] L2 boundedness for maximal commutators with rough variable kernels
    Chen, Yanping
    Ding, Yong
    Li, Ran
    REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (02) : 361 - 391
  • [44] Dyadic bivariate wavelet multipliers in L2(R2)
    Li, Zhong Yan
    Shi, Xian Liang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (08) : 1489 - 1500
  • [45] MRA Parseval Frame Wavelets and Their Multipliers in L2(Rn)
    Wu Guochang
    Yang Xiaohui
    Liu Zhanwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [46] Sharp Bounds for t-Haar Multipliers on L2
    Beznosova, Oleksandra
    Moraes, Jean Carlo
    Pereyra, Maria Cristina
    HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 612 : 45 - 64
  • [47] The Weighted Hermite Polynomials Form a Basis for L2(R)
    Johnston, William
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (03): : 249 - 253
  • [48] DIATOMIC TRANSITION OPERATORS - RESULTS OF L2 BASIS EXPANSIONS
    KURUOGLU, ZC
    MICHA, DA
    JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (05): : 3327 - 3336
  • [49] L2 boundedness of Hilbert transforms along variable flat curves
    Li, Junfeng
    Yu, Haixia
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1573 - 1591
  • [50] L2 Boundedness of the Fourier Integral Operator with Inhomogeneous Phase Functions
    Jia Wei DAI
    Jie Cheng CHEN
    ActaMathematicaSinica,EnglishSeries, 2023, (08) : 1525 - 1546