On the L2 boundedness of pseudo-multipliers for Hermite expansions

被引:3
|
作者
Ly, Fu Ken [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Learning Hub, Sydney, NSW 2006, Australia
关键词
Hermite operator; Calderon-Vaillancourt theorem; Pseudo-multiplier; Gaussian pseudo-differential; operator; SPACES;
D O I
10.1016/j.jfa.2023.110220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give various conditions for Hermite pseudo-multipliers to be bounded on L2(Rn). As a by-product we also give new results for pseudo-multipliers in the Gaussian measure setting. One of our key tools is a new integration by-parts formula for Hermite expansions. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org /licenses /by /4 .0/).
引用
收藏
页数:27
相关论文
共 50 条
  • [31] L2 BOUNDEDNESS OF OSCILLATORY INTEGRAL-OPERATORS
    PAN, YB
    DUKE MATHEMATICAL JOURNAL, 1991, 62 (01) : 157 - 178
  • [32] On L2 boundedness of rough Fourier integral operators
    Wu, Guoning
    Yang, Jie
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (01)
  • [33] A remark to the L2 boundedness of parametric Marcinkiewicz integral
    Ding, Yong
    Xue, Qingying
    Yabuta, Kozo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 691 - 697
  • [34] L2(Rn) boundedness for the commutators of convolution operators
    Hu, GO
    NAGOYA MATHEMATICAL JOURNAL, 2001, 163 : 55 - 70
  • [35] WEYL MULTIPLIERS, BOCHNER-RIESZ MEANS AND SPECIAL HERMITE EXPANSIONS
    THANGAVELU, S
    ARKIV FOR MATEMATIK, 1991, 29 (02): : 307 - 321
  • [36] Parseval frame wavelet multipliers in L2(ℝd)
    Zhongyan Li
    Xianliang Shi
    Chinese Annals of Mathematics, Series B, 2012, 33 : 949 - 960
  • [37] Parseval frame wavelet multipliers in L2(Rd)
    Li, Zhongyan
    Shi, Xianliang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (06) : 949 - 960
  • [38] Multipliers, Phases and Connectivity of MRA Wavelets in L2(ℝ2)
    Zhongyan Li
    Xingde Dai
    Yuanan Diao
    Jianguo Xin
    Journal of Fourier Analysis and Applications, 2010, 16 : 155 - 176
  • [39] The (L~p,Fpβ,∞)-Boundedness of Commutators of Multipliers
    Pu ZHANG Institute of Mathematics
    Acta Mathematica Sinica(English Series), 2005, 21 (04) : 765 - 772
  • [40] L2 BEHAVIOR OF EIGENFUNCTION EXPANSIONS - PRELIMINARY REPORT
    BENZINGE.HE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 368 - &