Novel Properties of q-Sine-Based and q-Cosine-Based q-Fubini Polynomials

被引:5
|
作者
Khan, Waseem Ahmad [1 ]
Alatawi, Maryam Salem [2 ]
Ryoo, Cheon Seoung [3 ]
Duran, Ugur [4 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
[2] Univ Tabuk, Fac Sci, Dept Math, Tabuk 71491, Saudi Arabia
[3] Hannam Univ, Dept Math, Daejeon 34430, South Korea
[4] Iskenderun Tech Univ, Fac Engn & Nat Sci, Dept Basic Concepts Engn, TR-31200 Hatay, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
q-special polynomials; q-trigonometric polynomials; q-Fubini polynomials; q-Stirling numbers of the second kind;
D O I
10.3390/sym15020356
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main purpose of this paper is to consider q-sine-based and q-cosine-Based q-Fubini polynomials and is to investigate diverse properties of these polynomials. Furthermore, multifarious correlations including q-analogues of the Genocchi, Euler and Bernoulli polynomials, and the q-Stirling numbers of the second kind are derived. Moreover, some approximate zeros of the q-sinebased and q-cosine-Based q-Fubini polynomials in a complex plane are examined, and lastly, these zeros are shown using figures.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Some Symmetric Properties and Location Conjecture of Approximate Roots for (p,q)-Cosine Euler Polynomials
    Ryoo, Cheon Seoung
    Kang, Jung Yoog
    SYMMETRY-BASEL, 2021, 13 (08):
  • [32] A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem
    Zamli, Kamal Z.
    Din, Fakhrud
    Ahmed, Bestoun S.
    Bures, Miroslav
    PLOS ONE, 2018, 13 (05):
  • [33] ψ-extensions of q-Hermite and q-Laguerre polynomials properties and principal statements
    Krot, E
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (12) : 1362 - 1367
  • [34] On (p, q)-Fibonacci and (p, q)-Lucas Polynomials Associated with Changhee Numbers and Their Properties
    Zhang, Chuanjun
    Khan, Waseem Ahmad
    Kizilates, Can
    SYMMETRY-BASEL, 2023, 15 (04):
  • [35] Some properties of q-biorthogonal polynomials
    Sekeroglu, Burak
    Srivastava, H. M.
    Tasdelen, Fatma
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 896 - 907
  • [36] ARITHMETIC PROPERTIES OF q-BARNES POLYNOMIALS
    Bayad, A.
    Kim, T.
    Kim, W. J.
    Lee, S. H.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (01) : 111 - 117
  • [37] Properties of convergence for ω, q-Bernstein polynomials
    Wang, Heping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1096 - 1108
  • [38] Approximation properties of bivariate complex q-Bernstein polynomials in the case q > 1
    Nazim I. Mahmudov
    Czechoslovak Mathematical Journal, 2012, 62 : 557 - 566
  • [39] SOME PROPERTIES OF THE Q-HERMITE POLYNOMIALS
    ALLAWAY, WR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03): : 686 - 694
  • [40] A Note on Symmetric Properties of the Twisted q-Bernoulli Polynomials and the Twisted Generalized q-Bernoulli Polynomials
    Jang, L. -C.
    Yi, H.
    Shivashankara, K.
    Kim, T.
    Kim, Y. H.
    Lee, B.
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,