Novel Properties of q-Sine-Based and q-Cosine-Based q-Fubini Polynomials

被引:5
|
作者
Khan, Waseem Ahmad [1 ]
Alatawi, Maryam Salem [2 ]
Ryoo, Cheon Seoung [3 ]
Duran, Ugur [4 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
[2] Univ Tabuk, Fac Sci, Dept Math, Tabuk 71491, Saudi Arabia
[3] Hannam Univ, Dept Math, Daejeon 34430, South Korea
[4] Iskenderun Tech Univ, Fac Engn & Nat Sci, Dept Basic Concepts Engn, TR-31200 Hatay, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 02期
关键词
q-special polynomials; q-trigonometric polynomials; q-Fubini polynomials; q-Stirling numbers of the second kind;
D O I
10.3390/sym15020356
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main purpose of this paper is to consider q-sine-based and q-cosine-Based q-Fubini polynomials and is to investigate diverse properties of these polynomials. Furthermore, multifarious correlations including q-analogues of the Genocchi, Euler and Bernoulli polynomials, and the q-Stirling numbers of the second kind are derived. Moreover, some approximate zeros of the q-sinebased and q-cosine-Based q-Fubini polynomials in a complex plane are examined, and lastly, these zeros are shown using figures.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] The orthogonality properties of q-polynomials
    Dehesa, JS
    Nikiforov, AF
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (04) : 343 - 354
  • [22] (p,q)-Type Polynomials and Their Properties
    Agyuz, Erkan
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [23] Approximation properties of the q-sine bases
    Boulton, Lyonell
    Lord, Gabriel
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2133): : 2690 - 2711
  • [24] q-Hermite Base Euler Polynomials Based Upon the q-umbral Algebra
    Dere, Rahime
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [25] A generalization of the Bernstein polynomials based on the q-integers
    Phillips, GM
    ANZIAM JOURNAL, 2000, 42 : 79 - 86
  • [26] A Note on Bernstein Polynomials Based On (p,q)-Calculus
    Agyuz, Erkan
    Acikgoz, Mehmet
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [27] q-Discrete distributions based on q-Meixner and q-Charlier orthogonal polynomials-Asymptotic behaviour
    Kyriakoussis, Andreas
    Vamvakari, Malvina G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (08) : 2285 - 2294
  • [28] q-Generalized Tangent Based Hybrid Polynomials
    Yasmin, Ghazala
    Islahi, Hibah
    Choi, Junesang
    SYMMETRY-BASEL, 2021, 13 (05):
  • [29] Properties of Non-symmetric Macdonald Polynomials at q=1 and q=0
    Alexandersson, Per
    Sawhney, Mehtaab
    ANNALS OF COMBINATORICS, 2019, 23 (02) : 219 - 239
  • [30] Some Properties of the Minimal Polynomials of 2cos(π/q) for odd q
    Ozgur, Birsen
    Demirci, Musa
    Yurttas, Aysun
    Cangul, I. Naci
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389