Estimates for low Steklov eigenvalues of surfaces with several boundary components

被引:2
|
作者
Perrin, Helene [1 ]
机构
[1] Univ Neuchatel, Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2024年 / 49卷 / 1期
关键词
Steklov problem; Eigenvalue; Lower bound; Hyperbolic surface; 1ST EIGENVALUE; INEQUALITY; MANIFOLDS;
D O I
10.1007/s40316-024-00221-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give computable lower bounds for the first non-zero Steklov eigenvalue sigma 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1$$\end{document} of a compact connected 2-dimensional Riemannian manifold M with several cylindrical boundary components. These estimates show how the geometry of M away from the boundary affects this eigenvalue. They involve geometric quantities specific to manifolds with boundary such as the extrinsic diameter of the boundary. In a second part, we give lower and upper estimates for the low Steklov eigenvalues of a hyperbolic surface with a geodesic boundary in terms of the length of some families of geodesics. This result is similar to a well known result of Schoen, Wolpert and Yau for Laplace eigenvalues on a closed hyperbolic surface. Dans cet article, nous donnons des bornes inferieures calculables pour la premiere valeur propre non nulle sigma 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1$$\end{document} de Steklov d'une variete riemannienne compacte et connexe M de dimension 2 avec un bord forme de plusieurs composantes connexes. Ces estimations montrent comment la geometrie de M loin du bord affecte cette valeur propre. Elles font intervenir des quantites geometriques specifiques aux varietes a bord comme le diametre extrinseque du bord. Dans une deuxieme partie, nous donnons des bornes inferieures et superieures pour les valeurs propres basses d'une surface hyperbolique a bord geodesique, qui dependent de la longueur de certaines familles de geodesiques. Ce resultat est similaire a un resultat bien connu de Schoen, Wolpert et Yau pour les valeurs propres du laplacien d'une surface hyperbolique fermee.
引用
收藏
页码:165 / 184
页数:20
相关论文
共 50 条
  • [11] Hypersurfaces with Prescribed Boundary and Small Steklov Eigenvalues
    Colbois, Bruno
    Girouard, Alexandre
    Metras, Antoine
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (01): : 46 - 57
  • [12] Flexibility of Steklov eigenvalues via boundary homogenisation
    Karpukhin, Mikhail
    Lagace, Jean
    ANNALES MATHEMATIQUES DU QUEBEC, 2024, 48 (01): : 175 - 186
  • [13] Estimates on the Neumann and Steklov principal eigenvalues of collapsing domains
    Acampora, P.
    Amato, V.
    Cristoforoni, E.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025,
  • [14] Sharp upper bounds for Steklov eigenvalues of a hypersurface of revolution with two boundary components in Euclidean space
    Tschanz, Leonard
    ANNALES MATHEMATIQUES DU QUEBEC, 2024, 48 (02): : 489 - 518
  • [15] COMPACT MANIFOLDS WITH FIXED BOUNDARY AND LARGE STEKLOV EIGENVALUES
    Colbois, Bruno
    El Soufi, Ahmad
    Girouard, Alexandre
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (09) : 3813 - 3827
  • [16] Shape optimization for combinations of Steklov eigenvalues on Riemannian surfaces
    Petrides, Romain
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (01)
  • [17] An optimization problem for nonlinear Steklov eigenvalues with a boundary potential
    Fernandez Bonder, Julian
    Giubergia, Graciela O.
    Mazzone, Fernando D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) : 234 - 243
  • [18] Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space
    Bruno Colbois
    Alexandre Girouard
    Katie Gittins
    The Journal of Geometric Analysis, 2019, 29 : 1811 - 1834
  • [19] Steklov Eigenvalues of Submanifolds with Prescribed Boundary in Euclidean Space
    Colbois, Bruno
    Girouard, Alexandre
    Gittins, Katie
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (02) : 1811 - 1834
  • [20] Shape optimization for low Neumann and Steklov eigenvalues
    Girouard, Alexandre
    Polterovich, Iosif
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (04) : 501 - 516