Transferable Water Potentials Using Equivariant Neural Networks

被引:5
|
作者
Maxson, Tristan [1 ]
Szilvasi, Tibor [1 ]
机构
[1] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35487 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 14期
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; ENERGY SURFACE; INTERFACES; SOLVATION; SPC;
D O I
10.1021/acs.jpclett.4c00605
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning interatomic potentials (MLIPs) have emerged as a technique that promises quantum theory accuracy for reduced cost. It has been proposed [J. Chem. Phys. 2023, 158, 084111] that MLIPs trained on solely liquid water data cannot accurately transfer to the vapor-liquid equilibrium while recovering the many-body decomposition (MBD) analysis of gas-phase water clusters. This suggests that MLIPs do not directly learn the physically correct interactions of water molecules, limiting transferability. In this work, we show that MLIPs using equivariant architecture and trained on 3200 liquid water structures reproduces liquid-phase water properties (e.g., density within 0.003 g/cm(3) between 230 and 365 K), vapor-liquid equilibrium properties up to 550 K, the MBD analysis of gas-phase water cluster up to six-body interactions, and the relative energy and the vibrational density of states of ice phases. We show that potentials developed using equivariant MLIPs allow transferability for arbitrary phases of water that remain stable in nanosecond long simulations.
引用
收藏
页码:3740 / 3747
页数:8
相关论文
共 50 条
  • [21] E(3)-Equivariant Mesh Neural Networks
    Thuan Trang
    Ngo, Nhat Khang
    Levy, Daniel
    Vo, Thieu N.
    Ravanbakhsh, Siamak
    Hy, Truong Son
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [22] Geometric deep learning and equivariant neural networks
    Jan E. Gerken
    Jimmy Aronsson
    Oscar Carlsson
    Hampus Linander
    Fredrik Ohlsson
    Christoffer Petersson
    Daniel Persson
    Artificial Intelligence Review, 2023, 56 : 14605 - 14662
  • [23] Equivariant Graph Neural Networks for Toxicity Prediction
    Cremer, Julian
    Medrano Sandonas, Leonardo
    Tkatchenko, Alexandre
    Clevert, Djork-Arne
    De Fabritiis, Gianni
    CHEMICAL RESEARCH IN TOXICOLOGY, 2023, 36 (10) : 1561 - 1573
  • [24] Any-dimensional equivariant neural networks
    Levin, Eitan
    Diaz, Mateo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [25] Soft Rotation Equivariant Convolutional Neural Networks
    Castro, Eduardo
    Pereira, Jose Costa
    Cardoso, Jaime S.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] Equivariant neural networks for robust CP observables
    Cruz, Sergio Sanchez
    Kolosova, Marina
    Alvarez, Clara Ramon
    Petrucciani, Giovanni
    Vischia, Pietro
    PHYSICAL REVIEW D, 2024, 110 (09)
  • [27] E(n) Equivariant Graph Neural Networks
    Satorras, Victor Garcia
    Hoogeboom, Emiel
    Welling, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [28] Lattice Gauge Equivariant Convolutional Neural Networks
    Favoni, Matteo
    Ipp, Andreas
    Mueller, David I.
    Schuh, Daniel
    PHYSICAL REVIEW LETTERS, 2022, 128 (03)
  • [29] Generalization capabilities of translationally equivariant neural networks
    Bulusu, Srinath
    Favoni, Matteo
    Ipp, Andreas
    Mueller, David, I
    Schuh, Daniel
    PHYSICAL REVIEW D, 2021, 104 (07)
  • [30] Geometric deep learning and equivariant neural networks
    Gerken, Jan E.
    Aronsson, Jimmy
    Carlsson, Oscar
    Linander, Hampus
    Ohlsson, Fredrik
    Petersson, Christoffer
    Persson, Daniel
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14605 - 14662