Equivariant neural networks for robust CP observables

被引:0
|
作者
Cruz, Sergio Sanchez [1 ]
Kolosova, Marina [2 ]
Alvarez, Clara Ramon [3 ,4 ]
Petrucciani, Giovanni [1 ]
Vischia, Pietro [3 ,4 ]
机构
[1] European Org Nucl Res CERN, CH-1211 Geneva 23, Switzerland
[2] Univ Florida, Gainesville, FL USA
[3] Univ Oviedo, Oviedo, Spain
[4] ICTEA, Oviedo, Asturias, Spain
关键词
D O I
10.1103/PhysRevD.110.096023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce the usage of equivariant neural networks in the search for violations of the charge-parity (CP) symmetry in particle interactions at the CERN Large Hadron Collider. We design neural networks that take as inputs kinematic information of recorded events and that transform equivariantly under a symmetry group related to the CP transformation. We show that this algorithm allows one to define observables reflecting the properties of the CP symmetry, showcasing its performance in several reference processes in top quark and electroweak physics. Imposing equivariance as an inductive bias in the algorithm improves the numerical convergence properties with respect to other methods that do not rely on equivariance and allows one to construct optimal observables that significantly improve the state-of-the-art methodology in the searches considered.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Equivariant Hypergraph Neural Networks
    Kim, Jinwoo
    Oh, Saeyoon
    Cho, Sungjun
    Hong, Seunghoon
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 86 - 103
  • [2] Clifford Group Equivariant Neural Networks
    Ruhe, David
    Brandstetter, Johannes
    Forre, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Equivariant neural networks for inverse problems
    Celledoni, Elena
    Ehrhardt, Matthias J.
    Etmann, Christian
    Owren, Brynjulf
    Schonlieb, Carola-Bibiane
    Sherry, Ferdia
    INVERSE PROBLEMS, 2021, 37 (08)
  • [4] Equivariant Neural Networks for Indirect Measurements
    Beckmann, Matthias
    Heilenkotter, Nick
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2024, 6 (03): : 579 - 601
  • [5] Theory for Equivariant Quantum Neural Networks
    Nguyen, Quynh T.
    Schatzki, Louis
    Braccia, Paolo
    Ragone, Michael
    Coles, Patrick J.
    Sauvage, Frederic
    Larocca, Martin
    Cerezo, M.
    PRX QUANTUM, 2024, 5 (02):
  • [6] Observables in the equivariant A-model
    F. Bonechi
    A. S. Cattaneo
    R. Iraso
    M. Zabzine
    Letters in Mathematical Physics, 2020, 110 : 695 - 711
  • [7] Observables in the equivariant A-model
    Bonechi, F.
    Cattaneo, A. S.
    Iraso, R.
    Zabzine, M.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (04) : 695 - 711
  • [8] E(3)-Equivariant Mesh Neural Networks
    Thuan Trang
    Ngo, Nhat Khang
    Levy, Daniel
    Vo, Thieu N.
    Ravanbakhsh, Siamak
    Hy, Truong Son
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [9] Geometric deep learning and equivariant neural networks
    Jan E. Gerken
    Jimmy Aronsson
    Oscar Carlsson
    Hampus Linander
    Fredrik Ohlsson
    Christoffer Petersson
    Daniel Persson
    Artificial Intelligence Review, 2023, 56 : 14605 - 14662
  • [10] Equivariant Graph Neural Networks for Toxicity Prediction
    Cremer, Julian
    Medrano Sandonas, Leonardo
    Tkatchenko, Alexandre
    Clevert, Djork-Arne
    De Fabritiis, Gianni
    CHEMICAL RESEARCH IN TOXICOLOGY, 2023, 36 (10) : 1561 - 1573