Non-binary IoU and progressive coupling and refining network for salient object detection

被引:5
|
作者
Zhou, Qianwei
Zhou, Chen
Yang, Zihao
Xu, Yingkun
Guan, Qiu [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
关键词
Salient object detection; Intersection over Union; Label decouple; FEATURES;
D O I
10.1016/j.eswa.2023.120370
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, many salient object detection (SOD) methods decouple image features into body features and edge features, which imply a new development direction in the field of SOD. Most of them mainly focus on how to decouple features, but the fusion method for the decoupled features can be further improved. In this paper, we propose a network, namely Progressive Coupling and Refining Network (PCRNet), which allows the progressive coupling and refining of the decoupled features to get accurate salient features. Furthermore, a novel loss, namely Non-Binary Intersection over Union (NBIoU), is proposed based on the characteristics of non-binary label images and the principle of Intersection over Union (IoU) loss. Experimental results show that our NBIoU performance surpasses binary cross-entropy (BCE), IoU and Dice on non-binary label images. The results on five popular SOD benchmark datasets show that our PCRNet significantly exceeds the previous state-of-the-art (SOTA) methods on multiple metrics. In addition, although our method is designed for SOD, it is comparable with previous SOTA methods on multiple benchmark datasets for camouflaged object detection without any modification on the network structure, verified the robustness of the proposed method.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Decomposition and Completion Network for Salient Object Detection
    Wu, Zhe
    Su, Li
    Huang, Qingming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6226 - 6239
  • [22] Edge Enhancing Network for Salient Object Detection
    Zhao W.
    Wang H.
    Liu X.
    Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 (02): : 293 - 302
  • [23] Feature Recalibration Network for Salient Object Detection
    Tan, Zhenshan
    Gu, Xiaodong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 64 - 75
  • [24] Lightweight adversarial network for salient object detection
    Huang, Lili
    Li, Guanbin
    Li, Ya
    Lin, Liang
    NEUROCOMPUTING, 2020, 381 (381) : 130 - 140
  • [25] Feature Refine Network for Salient Object Detection
    Yang, Jiejun
    Wang, Liejun
    Li, Yongming
    SENSORS, 2022, 22 (12)
  • [26] Lightweight Progressive Multilevel Feature Collaborative Network for Remote Sensing Image Salient Object Detection
    Cheng, Bei
    Liu, Zao
    Wang, Qingwang
    Shen, Tao
    Fu, Chengbiao
    Tian, Anhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] A Multistage Refinement Network for Salient Object Detection
    Zhang, Lihe
    Wu, Jie
    Wang, Tiantian
    Borji, Ali
    Wei, Guohua
    Lu, Huchuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 3534 - 3545
  • [28] A Fully Convolutional Network for Salient Object Detection
    Bianco, Simone
    Buzzelli, Marco
    Schettini, Raimondo
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 : 82 - 92
  • [29] Progressive multi-scale fusion network for RGB-D salient object detection
    Ren, Guangyu
    Xie, Yanchun
    Dai, Tianhong
    Stathaki, Tania
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 223
  • [30] Bi-Directional Progressive Guidance Network for RGB-D Salient Object Detection
    Yang, Yang
    Qin, Qi
    Luo, Yongjiang
    Liu, Yi
    Zhang, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 5346 - 5360