Lightweight Progressive Multilevel Feature Collaborative Network for Remote Sensing Image Salient Object Detection

被引:1
|
作者
Cheng, Bei [1 ,2 ]
Liu, Zao [1 ]
Wang, Qingwang [1 ]
Shen, Tao [1 ]
Fu, Chengbiao [1 ]
Tian, Anhong [1 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
[2] Yunnan Key Lab Comp Technol Applicat, Kunming 650500, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Land Resource Engn, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Remote sensing; Optical sensors; Optical imaging; Object detection; Object recognition; Convolutional neural networks; Collaboration; Image edge detection; Advanced semantics; detail enhancement; lightweight salient object detection (SOD); multilevel collaboration; optical remote sensing image (RSI);
D O I
10.1109/TGRS.2024.3487244
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, numerous outstanding technologies have been proposed for salient object detection (SOD) in remote sensing images (RSIs), but most of them focus solely on improving performance while disregarding computational, thereby lacking portability and mobility. This article introduces a novel lightweight progressive multilevel feature collaborative network, termed LPMFCNet. This framework constructs progressive feature information through multilevel image content extraction and designs a multichannel interactive deep neural network with information fusion and filtering functions. First, a spatial detail enhancement module (SDEM) is devised to acquire distant feature information through intermediate branch expansion of receptive fields while preserving multiscale information extraction. Second, an advanced semantic interaction module (ASIM) is proposed to model distant dependency relationships between deep semantic features to better identify the positional information of salient objects. Finally, a multilevel feature collaboration module (MFCM) is designed to collaboratively utilize target features from a multilevel perspective, which fully mining deep-level semantic positional information while retaining target detail information. Extensive experimental comparisons are conducted on two remote sensing datasets with 17 advanced methods. Results demonstrate that the proposed method exhibits superior detection performance while maintaining lightweightness. The LPMFCNet only contains 3.26M parameters and runs 0.5G FLOPs for a 256 x 256 image.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Progressive Feature Interleaved Fusion Network for Remote-Sensing Image Salient Object Detection
    Han, Pengfei
    Zhao, Bin
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [2] Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation
    Li, Gongyang
    Liu, Zhi
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Jun
    Huang, Kaigen
    ELECTRONICS, 2025, 14 (01):
  • [4] CSFFNet: Lightweight cross-scale feature fusion network for salient object detection in remote sensing images
    Wang, Longbao
    Long, Chong
    Li, Xin
    Tang, Xiaodan
    Bai, Zhipeng
    Gao, Hongmin
    IET IMAGE PROCESSING, 2024, 18 (03) : 602 - 614
  • [5] Progressive Feature Polishing Network for Salient Object Detection
    Wang, Bo
    Chen, Quan
    Zhou, Min
    Zhang, Zhiqiang
    Jin, Xiaogang
    Gai, Kun
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12128 - 12135
  • [6] Multilevel diverse feature aggregation network for salient object detection
    Yang, Qiaoning
    Zheng, Jiahao
    Chen, Juan
    NEUROCOMPUTING, 2025, 628
  • [7] A Lightweight Semantic- and Graph-Guided Network for Advanced Optical Remote Sensing Image Salient Object Detection
    Liu, Jie
    He, Jinpeng
    Chen, Huaixin
    Yang, Ruoyu
    Huang, Ying
    REMOTE SENSING, 2025, 17 (05)
  • [8] Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images
    Wang, Zhen
    Guo, Jianxin
    Zhang, Chuanlei
    Wang, Buhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Multiscale Feature Aggregation Network for Salient Object Detection in Optical Remote Sensing Images
    Yan, Longquan
    Geng, Guohua
    Zhang, Qi
    Feng, Long
    Liu, Yangyang
    Ge, Xing
    Jia, Haotian
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18362 - 18373
  • [10] Hybrid Feature Aligned Network for Salient Object Detection in Optical Remote Sensing Imagery
    Wang, Qi
    Liu, Yanfeng
    Xiong, Zhitong
    Yuan, Yuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60