The Cellwise Minimum Covariance Determinant Estimator

被引:6
|
作者
Raymaekers, Jakob [1 ]
Rousseeuw, Peter J. [2 ]
机构
[1] Maastricht Univ, Dept Quantitat Econ, Maastricht, Netherlands
[2] Univ Leuven, Sect Stat & Data Sci, Leuven, Belgium
关键词
Cellwise outliers; Covariance matrix; Likelihood; Missing values; MULTIVARIATE LOCATION; ROBUST ESTIMATION; ALGORITHM; OUTLIERS; SCATTER;
D O I
10.1080/01621459.2023.2267777
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The usual Minimum Covariance Determinant (MCD) estimator of a covariance matrix is robust against casewise outliers. These are cases (that is, rows of the data matrix) that behave differently from the majority of cases, raising suspicion that they might belong to a different population. On the other hand, cellwise outliers are individual cells in the data matrix. When a row contains one or more outlying cells, the other cells in the same row still contain useful information that we wish to preserve. We propose a cellwise robust version of the MCD method, called cellMCD. Its main building blocks are observed likelihood and a penalty term on the number of flagged cellwise outliers. It possesses good breakdown properties. We construct a fast algorithm for cellMCD based on concentration steps (C-steps) that always lower the objective. The method performs well in simulations with cellwise outliers, and has high finite-sample efficiency on clean data. It is illustrated on real data with visualizations of the results. Supplementary materials for this article are available online.
引用
收藏
页码:2610 / 2621
页数:12
相关论文
共 50 条
  • [21] Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator
    Hardin, J
    Rocke, DM
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 44 (04) : 625 - 638
  • [22] Minimum covariance determinant and extensions
    Hubert, Mia
    Debruyne, Michiel
    Rousseeuw, Peter J.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (03):
  • [23] Robust multiple-set linear canonical analysis based on minimum covariance determinant estimator
    Djemby Bivigou, Ulrich
    Nkiet, Guy Martial
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (22) : 7783 - 7800
  • [24] Modified minimum covariance determinant estimator and its application to outlier detection of chemical process data
    Wu, Guoqing
    Chen, Chao
    Yan, Xuefeng
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (05) : 1007 - 1020
  • [25] COVARIANCE ANALYSIS OF THE MINIMUM MODEL ERROR ESTIMATOR
    Majji, Manoranjan
    Turner, James D.
    Junkins, John L.
    SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 2227 - +
  • [26] Asymptotic expansion of the minimum covariance determinant estimators
    Cator, Eric A.
    Lopuhaa, Hendrik P.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) : 2372 - 2388
  • [27] Robust Hotelling T2 control chart using adaptive reweighted minimum covariance determinant estimator
    Polat, Esra
    CHILEAN JOURNAL OF STATISTICS, 2021, 12 (02): : 171 - 187
  • [28] OUTLIER DETECTION VIA A MINIMUM RIDGECOVARIANCE DETERMINANT ESTIMATOR
    Li, Chikun
    Jin, Baisuo
    Wu, Yuehua
    STATISTICA SINICA, 2024, 34 (04) : 1923 - 1950
  • [29] ROBUST COMMON SPATIAL PATTERNS BY MINIMUM DIVERGENCE COVARIANCE ESTIMATOR
    Samek, Wojciech
    Kawanabe, Motoaki
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [30] Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data
    Oguamalam, Jeremy
    Radojicic, Una
    Filzmoser, Peter
    TECHNOMETRICS, 2024, 66 (04) : 588 - 599